Publication:
Potential of sodium alginate/titanium oxide biomembrane nanocomposite in DMFC application

dc.citedby30
dc.contributor.authorShaari N.en_US
dc.contributor.authorKamarudin S.K.en_US
dc.contributor.authorZakaria Z.en_US
dc.contributor.authorid57190803462en_US
dc.contributor.authorid6506009910en_US
dc.contributor.authorid56167779200en_US
dc.date.accessioned2023-05-29T07:22:51Z
dc.date.available2023-05-29T07:22:51Z
dc.date.issued2019
dc.descriptionAlginate; Biological membranes; Biopolymers; Direct methanol fuel cells (DMFC); Forestry; Gravimetric analysis; Hydrophilicity; Ion exchange; Methanol; Nanocomposites; Proton conductivity; Scanning electron microscopy; Sodium alginate; Swelling; Thermogravimetric analysis; Bio membranes; Field emission scanning electron microscopes; Fourier transform infra reds; Ion exchange capacity; Methanol permeability; Proton exchange membranes; Sodium alginate membrane; Thermal gravimetric analysis; Titanium oxidesen_US
dc.description.abstractA proton exchange membrane was synthesized consuming a sodium alginate biopolymer as the matrix and titanium oxide as the nanofiller. The titanium oxide content varied from 5 to 25 wt%. The biomembrane nanocomposite performs better than the pristine sodium alginate membrane based on liquid uptake, methanol permeability, proton conductivity, ion exchange capacity, and oxidative stability outcomes. The unique properties of sodium alginate and titanium oxide lead to outstanding interconnections, thus producing new materials with great characteristics and enhanced performance. The highest proton conductivity achieved in this study is 17.3 � 10-3 S cm-1, which performed by SAT5 (25 wt%) membranes at 70�C. An optimal content of titanium oxide enhances the conductivity and methanol permeability of the membrane. Additionally, the hydrophilicity of pure sodium alginate is greatly reduced and achieves a good liquid uptake capacity and swelling ratio. The characteristics of the SA/TiO2 biomembrane nanocomposite were determined with field emission scanning electron microscope, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis/differential scanning calorimetry, and mechanical strength analysis. � 2019 John Wiley & Sons, Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1002/er.4801
dc.identifier.epage8069
dc.identifier.issue14
dc.identifier.scopus2-s2.0-85070866632
dc.identifier.spage8057
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070866632&doi=10.1002%2fer.4801&partnerID=40&md5=791f55e3cbe701111f728f5e3601c4ef
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/24338
dc.identifier.volume43
dc.publisherJohn Wiley and Sons Ltden_US
dc.relation.ispartofAll Open Access, Bronze
dc.sourceScopus
dc.sourcetitleInternational Journal of Energy Research
dc.titlePotential of sodium alginate/titanium oxide biomembrane nanocomposite in DMFC applicationen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections