Publication:
Tsunami inundation maps for the northwest of Peninsular Malaysia and demarcation of affected electrical assets

Date
2021
Authors
Naim N.N.N.
Mardi N.H.
Malek M.A.
Teh S.Y.
Wil M.A.
Shuja A.H.
Ahmed A.N.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media Deutschland GmbH
Research Projects
Organizational Units
Journal Issue
Abstract
The massive destruction and loss caused by the 2004 Sumatra�Andaman tsunami were attributed to the lack of knowledge on tsunami and low regional detection and communication systems for early warning in that region. This study aimed to identify locations at risk of impending tsunami from Andaman Sea for the safety of community and proper development planning at the coastal areas by providing an updated and revised inundation maps. The last study on this area was conducted several years ago which open the possibility to new findings. Generated by tsunami simulation models, the maps illustrate the extent and level of inundation to which the coastal community and infrastructure would be subjected. As a result of coastal changes and availability of better topographic data, the existing inundation maps for the coastal areas of northwest Peninsular Malaysia at risk to impending tsunami from the Andaman Sea are revised. This paper documented the computational setup leading to the generation of the revised inundation maps. The tsunami simulation model TUNA was used to simulate the generation, propagation, and subsequent run-up and inundation of tsunamis triggered by earthquakes of moment magnitudes (Mw) 8.5, 9.0, and 9.25 along the Sunda Trench. From the simulations, it was found that at Mw 9.25, Balik Pulau, Pulau Pinang would be subjected to inundation of as far as 3.47�km with 5.40-m-deep inundation at the highest section. � 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Description
Coastal zones; Tsunamis; Coastal change; Coastal communities; Development planning; Inundation maps; Moment magnitudes; Topographic data; Tsunami inundation; Tsunami simulation; Floods; coastal zone management; early warning system; earthquake event; electricity supply; flooding; map; risk assessment; safety; tsunami event; wave modeling; wave runup; Aceh; Andaman Sea; article; earthquake; Penang; seashore; simulation; tsunami; environmental monitoring; Indonesia; Malaysia; tsunami; Andaman Sea; Indian Ocean; Java Trench; Malaysia; West Malaysia; Areca catechu; Earthquakes; Environmental Monitoring; Indonesia; Malaysia; Tsunamis
Keywords
Citation
Collections