Publication:
A Mathematical Model of Flexural-Creep Behaviour for Future Service Expectancy of a GFRP Composite Cross-Arm with the Influence of Outdoor Temperature

dc.citedby4
dc.contributor.authorAlhayek A.en_US
dc.contributor.authorSyamsir A.en_US
dc.contributor.authorSupian A.B.M.en_US
dc.contributor.authorUsman F.en_US
dc.contributor.authorNajeeb M.I.en_US
dc.contributor.authorAsyraf M.R.M.en_US
dc.contributor.authorid57221437286en_US
dc.contributor.authorid57195320482en_US
dc.contributor.authorid57202962691en_US
dc.contributor.authorid55812540000en_US
dc.contributor.authorid57208125014en_US
dc.contributor.authorid57205295733en_US
dc.date.accessioned2024-10-14T03:18:11Z
dc.date.available2024-10-14T03:18:11Z
dc.date.issued2023
dc.description.abstractExposure to high temperatures can damage GFRP laminates� mechanical properties and, as a result, degrade their long-term performance, leading to rupture during their service life. Therefore, this study investigated the flexural-creep behaviour of pultruded glass fibre-reinforced polymer (pGFRP) when subjected to elevated temperatures and utilised two mathematical models to evaluate the structure's serviceability when subjected to a variety of stress levels. Two main parameters were investigated: elevated temperature (25 to 40��C) and constant load levels (12%, 24%, and 37%), whereas the pGFRP specimens were monitored for 720�h (30�days). Furthermore, the experimental work has been paired with mathematical models, namely, Findley�s power law model and Burger�s model, to predict the life span of a pGFRP cross-arm according to the data obtained from creep tests. Results showed the specimens failed in a brittle manner as expected under the static 4-point bending tests with an average ultimate strength of 242.6�MPa. Moreover, both models used to simulate the creep behaviour of the GFRP laminates matched very well with the experimental data. However, these models showed a substantial difference in the strain predicted over the 120,000�h period, with Burger�s model predicting the specimens to reach the ultimate strain in 9.4 to 11.4�years, depending on the stress level, while Findley�s model only showed a minimal increase in the total strain. This suggests that Burger�s model might be more conservative and more reasonable for creep at elevated temperatures. � 2023, The Author(s), under exclusive licence to the Korean Fiber Society.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s12221-023-00235-3
dc.identifier.epage2437
dc.identifier.issue7
dc.identifier.scopus2-s2.0-85164139846
dc.identifier.spage2425
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85164139846&doi=10.1007%2fs12221-023-00235-3&partnerID=40&md5=8d98a97ad32858fc802759147463df69
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/34153
dc.identifier.volume24
dc.pagecount12
dc.publisherKorean Fiber Societyen_US
dc.sourceScopus
dc.sourcetitleFibers and Polymers
dc.subjectElevated temperature
dc.subjectFlexural creep behaviour
dc.subjectGFRP composite cross-arm
dc.subjectMathematical model
dc.subjectPultrusion
dc.subjectBrittleness
dc.subjectCreep
dc.subjectData
dc.subjectMathematical Models
dc.subjectSamples
dc.subjectService Life
dc.subjectStresses
dc.subjectTemperature
dc.subjectBending tests
dc.subjectBrittle fracture
dc.subjectFiber reinforced plastics
dc.subjectPultrusion
dc.subjectCreep behaviors
dc.subjectCross arm
dc.subjectElevated temperature
dc.subjectFlexural creep behavior
dc.subjectGFRP composite cross-arm
dc.subjectGFRP composites
dc.subjectGFRP laminates
dc.subjectGlassfiber reinforced polymers (GFRP)
dc.subjectS models
dc.subjectStress levels
dc.subjectCreep
dc.titleA Mathematical Model of Flexural-Creep Behaviour for Future Service Expectancy of a GFRP Composite Cross-Arm with the Influence of Outdoor Temperatureen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections