Publication: Modelling soil deposition predictions on solar photovoltaic panels using ANN under Malaysia?s meteorological condition
| dc.citedby | 0 | |
| dc.contributor.author | Suhaimi M.A.A.M. | en_US |
| dc.contributor.author | Dahlan N.Y. | en_US |
| dc.contributor.author | Asman S.H. | en_US |
| dc.contributor.author | Rajasekar N. | en_US |
| dc.contributor.author | Mohamed H. | en_US |
| dc.contributor.authorid | 57553630500 | en_US |
| dc.contributor.authorid | 24483200900 | en_US |
| dc.contributor.authorid | 57194493395 | en_US |
| dc.contributor.authorid | 35090434600 | en_US |
| dc.contributor.authorid | 57136356100 | en_US |
| dc.date.accessioned | 2025-03-03T07:41:26Z | |
| dc.date.available | 2025-03-03T07:41:26Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Solar photovoltaic (PV) panels performance is influenced by various external factors such as precipitation, wind angle, ambient temperature, wind speed, transient irradiation, and soil deposition. Soiling accumulation on panels poses a significant challenge to PV power generation. This paper presents the development of an artificial neural network (ANN)-based soil deposition prediction model for PV systems. Conducted at a Malaysian solar farm over three months, the research utilized power output data from the inverter as model output and meteorological data as input variables. The model employed the Levenberg-Marquardt backpropagation method with Tansig and Purline activation functions. Performance assessment via statistical comparison of experimental and simulated results revealed a coefficient of determination (R2) value of 0.68073 for the ANN architecture of 5 input layers, 30 hidden layers, and 1 output layer (5-30-1). Sensitivity analysis highlighted relative humidity and wind direction as the most influential parameters affecting PV soiling rate. The developed ANN model, combined with sensitivity analysis, serves as a robust foundation for enhancing the efficiency of smart sensors in PV module cleaning systems. ? 2024, Intelektual Pustaka Media Utama. All rights reserved. | en_US |
| dc.description.nature | Final | en_US |
| dc.identifier.doi | 10.11591/ijaas.v13.i4.pp796-805 | |
| dc.identifier.epage | 805 | |
| dc.identifier.issue | 4 | |
| dc.identifier.scopus | 2-s2.0-85210073357 | |
| dc.identifier.spage | 796 | |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85210073357&doi=10.11591%2fijaas.v13.i4.pp796-805&partnerID=40&md5=2f878946accbc29e2b54d86840bbc0eb | |
| dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/36141 | |
| dc.identifier.volume | 13 | |
| dc.pagecount | 9 | |
| dc.publisher | Intelektual Pustaka Media Utama | en_US |
| dc.source | Scopus | |
| dc.sourcetitle | International Journal of Advances in Applied Sciences | |
| dc.title | Modelling soil deposition predictions on solar photovoltaic panels using ANN under Malaysia?s meteorological condition | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |