Publication:
Exploring the Potentials of Copper Oxide and CNC Nanocoolants

dc.citedby0
dc.contributor.authorZurghiba H.en_US
dc.contributor.authorKadirgama K.en_US
dc.contributor.authorSazali N.en_US
dc.contributor.authorNoor M.M.en_US
dc.contributor.authorBakar R.A.en_US
dc.contributor.authorSivaraos S.en_US
dc.contributor.authorYusaf T.en_US
dc.contributor.authorAlsalman A.en_US
dc.contributor.authorYaw C.T.en_US
dc.contributor.authorPaw K.S.en_US
dc.contributor.authorKiong T.S.en_US
dc.contributor.authorFoo B.en_US
dc.contributor.authorid58666717800en_US
dc.contributor.authorid12761486500en_US
dc.contributor.authorid57192717612en_US
dc.contributor.authorid55196353400en_US
dc.contributor.authorid57191230083en_US
dc.contributor.authorid58116119600en_US
dc.contributor.authorid23112065900en_US
dc.contributor.authorid57192652867en_US
dc.contributor.authorid36560884300en_US
dc.contributor.authorid57884252700en_US
dc.contributor.authorid57216824752en_US
dc.contributor.authorid58667414600en_US
dc.date.accessioned2025-03-03T07:44:32Z
dc.date.available2025-03-03T07:44:32Z
dc.date.issued2024
dc.description.abstractThe characteristics, stability, kinematic viscosity, viscosity index, thermal conductivity, and specific heat changes of Copper Oxide (CuO) and Cellulose Nanocrystal (CNC) hybrid nanocoolants at low concentrations are investigated in this work. The hybrid nanocoolants were created using different ratios of CNC and CuO nanoparticles and compared to single nanoparticle coolants. The existence of Cu-O and other similar formations was verified using Fourier Transform Infrared Spectroscopy (FTIR). Visual examination and UV Spectrophotometry stability study revealed that the nanocoolants were stable for up to 8 weeks, with little precipitation seen for single nanoparticle coolants after 12 weeks. When tested against temperature, kinematic viscosity decreased with increasing temperature, with very minor differences amongst coolants. The results of the Viscosity Index (VI) indicated that the hybrid nanocoolant performed similarly to the basic fluid, Ethylene Glycol (EG), even at high temperatures. Thermal conductivity rose as temperature increased, with a single CuO nanocoolant and a CNC:CuO (80:20) hybrid having the maximum conductivity. Specific heat capacity measurements revealed a declining trend as temperature rose. Overall, the CNC:CuO (80:20) hybrid nanocoolant and the CuO single nanocoolant displayed improved characteristics and stability, suggesting their potential for increased heat transfer applications. ? 2024, Semarak Ilmu Publishing. All rights reserved.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.37934/araset.34.2.315326
dc.identifier.epage326
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85179355603
dc.identifier.spage315
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85179355603&doi=10.37934%2faraset.34.2.315326&partnerID=40&md5=9cb5534cfac9b0179a3569d29ab9ff72
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36768
dc.identifier.volume34
dc.pagecount11
dc.publisherSemarak Ilmu Publishingen_US
dc.relation.ispartofAll Open Access; Hybrid Gold Open Access
dc.sourceScopus
dc.sourcetitleJournal of Advanced Research in Applied Sciences and Engineering Technology
dc.titleExploring the Potentials of Copper Oxide and CNC Nanocoolantsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections