Publication:
Surface engineering of a 2D CuFe-LDH/MoS2 photocatalyst for improved hydrogen generation

dc.citedby4
dc.contributor.authorVennapoosa C.S.en_US
dc.contributor.authorShelake S.P.en_US
dc.contributor.authorJaksani B.en_US
dc.contributor.authorJamma A.en_US
dc.contributor.authorMoses Abraham B.en_US
dc.contributor.authorSesha Sainath A.V.en_US
dc.contributor.authorAhmadipour M.en_US
dc.contributor.authorPal U.en_US
dc.contributor.authorid57566914300en_US
dc.contributor.authorid58479825900en_US
dc.contributor.authorid58817033100en_US
dc.contributor.authorid58136696100en_US
dc.contributor.authorid57191525848en_US
dc.contributor.authorid12803038800en_US
dc.contributor.authorid55533484700en_US
dc.contributor.authorid8908351700en_US
dc.date.accessioned2025-03-03T07:45:10Z
dc.date.available2025-03-03T07:45:10Z
dc.date.issued2024
dc.description.abstractCreating effective heterostructure photocatalysts with S-scheme-based charge-transfer dynamics enables efficient electron transfers, thereby enhancing visible-light-induced photocatalytic hydrogen production. In this report, we investigate a series of CuFe-LDH/MoS2 composites synthesized by employing MoS2 with CuFe-LDH through a self-assembled chemical method and an in situ hydrothermal process. The morphological features illustrate a consistent stacked nanosheet-like structure. The enhanced electronic and optical properties of the as-prepared CuFe-LDH/MoS2 and their improved photocatalytic hydrogen evolution execution is credited to the S-scheme heterojunction preventing the recombination of photogenerated charge transporters and improving the fast charge transference and utilization. The CuFe-LDH/MoS2 photocatalyst exhibits a superior photocatalytic H2 creation rate of 3.4 mmol g?1 h?1 and an AQY of 1.3% compared to CuFe-LDH (1.3 mmol g?1 h?1; AQY:0.5%). DFT studies reveal that the synergistic effects of the CuFe-LDH/MoS2 interface effectively enhance both the thermodynamics and kinetics of the rate-determining step for the hydrogen evolution reaction, which aligns with the experimental results. This design approach paves the way for creating highly efficient photocatalysts for future research in this promising domain. ? 2024 RSC.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1039/d3ma00881a
dc.identifier.epage4171
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85188218857
dc.identifier.spage4159
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85188218857&doi=10.1039%2fd3ma00881a&partnerID=40&md5=6972820bb15d0490bc8e4cde00131c71
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36848
dc.identifier.volume5
dc.pagecount12
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofAll Open Access; Gold Open Access
dc.sourceScopus
dc.sourcetitleMaterials Advances
dc.subjectHydrothermal synthesis
dc.subjectPhotocatalytic activity
dc.subjectSilicon compounds
dc.subjectCharge-transfer dynamics
dc.subjectChemical method
dc.subjectElectron transfer
dc.subjectHydrogen generations
dc.subjectHydrothermal process
dc.subjectMoS 2
dc.subjectPhotocatalytic hydrogen production
dc.subjectSurface engineering
dc.subjectSynthesised
dc.subjectVisible light induced
dc.subjectHydrogen evolution reaction
dc.titleSurface engineering of a 2D CuFe-LDH/MoS2 photocatalyst for improved hydrogen generationen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections