Publication: Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter
| dc.citedby | 0 | |
| dc.contributor.author | Abdolrasol M.G.M. | en_US |
| dc.contributor.author | Tiong S.K. | en_US |
| dc.contributor.author | Ker P.J. | en_US |
| dc.contributor.author | Ansari S. | en_US |
| dc.contributor.author | Hannan M.A. | en_US |
| dc.contributor.author | Ustun T.S. | en_US |
| dc.contributor.authorid | 35796848700 | en_US |
| dc.contributor.authorid | 15128307800 | en_US |
| dc.contributor.authorid | 37461740800 | en_US |
| dc.contributor.authorid | 57218906707 | en_US |
| dc.contributor.authorid | 7103014445 | en_US |
| dc.contributor.authorid | 43761679200 | en_US |
| dc.date.accessioned | 2025-03-03T07:46:05Z | |
| dc.date.available | 2025-03-03T07:46:05Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This paper presents a study on Maximum Power Point Tracking (MPPT) employing a DC-DC boost converter in MATLAB. The approach utilizes a genetic algorithm to determine optimal values for the membership functions (MFs) and the configuration of rules in a Mamdani fuzzy inference system. The fuzzy system is designed to manage the error signal derived from comparing the reference voltage of the Perturb and Observe (P&O) controller with the photovoltaic (PV) voltage. Inputs to the fuzzy controller include the error and its rate of change, with the output controlling the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) pulses. The optimization aims to minimize the Root Mean Square Error (RMSE) to identify the most effective MFs and rules for the fuzzy controller, ultimately enhancing the MPPT output of the boost converter. ? 2024 IEEE. | en_US |
| dc.description.nature | Final | en_US |
| dc.identifier.doi | 10.1109/ICCIGST60741.2024.10717559 | |
| dc.identifier.scopus | 2-s2.0-85208431862 | |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208431862&doi=10.1109%2fICCIGST60741.2024.10717559&partnerID=40&md5=507a1fada3e2168338695712dbb8b135 | |
| dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/36954 | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.source | Scopus | |
| dc.sourcetitle | 2024 International Conference on Computational Intelligence for Green and Sustainable Technologies, ICCIGST 2024 - Proceedings | |
| dc.subject | Adaptive boosting | |
| dc.subject | Boost converter | |
| dc.subject | Fuzzy control | |
| dc.subject | Fuzzy inference | |
| dc.subject | Fuzzy rules | |
| dc.subject | MOSFET devices | |
| dc.subject | Root loci | |
| dc.subject | Surface discharges | |
| dc.subject | BOOST converter | |
| dc.subject | Dc - dc boost converters | |
| dc.subject | DC-DC boost genetic algorithm | |
| dc.subject | Fuzzy controllers | |
| dc.subject | Fuzzy inference systems | |
| dc.subject | Mamdani fuzzy inferences | |
| dc.subject | Maximum Power Point Tracking | |
| dc.subject | Memberships function | |
| dc.subject | Optimal fuzzy logic controllers | |
| dc.subject | Optimal values | |
| dc.subject | MOS devices | |
| dc.title | Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter | en_US |
| dc.type | Conference paper | en_US |
| dspace.entity.type | Publication |