Publication:
Measurement of complex modulus properties of magnetorheological elastomer ( MRE ) using oberst beam configuration

Date
2020-02
Authors
Kartikeyan A / l Yogeswaran
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Abstract
MRE are composite material which are intelligent with properties sensitive to magnetic field. A magnetorheological elastomer based on silicone rubber with different percentage of CIP added was prepared. The impact of the different level of magnetic field intensity was experimentally studied. Young’s modulus, loss factor and natural frequency are dynamic properties of material which are exceptionally vital for applications where exactness is prime significance, along these lines finding dynamic properties of materials is exceptionally critical for the solicitations like vehicles, oil plants and plane in arrange to supply substantial information for numerical analysis of structures. Viscoelastic materials are broadly utilized for damping treatment purposes in arrange to reduce resonant vibrations in numerous applications. In this manner, different test procedures have been created within the past for the estimation of these properties. Oberst beam technique is one of the standard test strategies for measuring energetic properties of materials (ASTM E756 – 93). This experiment presents a brief description of the Oberst beam technique and illustrates its applications to determine the dynamic properties of isotropic and anisotropic samples. Test results are displayed in this paper to illustrate the precision of the recognizable proof method utilizing a impact hammer on a oberst beam configuration of the mre and the composite beam.
Description
Keywords
MRE , Complex modulus properties , Oberst beam
Citation