Publication:
Blending of a 3D cloud-like morphology with a 1D structure in a VO2/MXene nanocomposite to enhance the charge storage capability

dc.citedby2
dc.contributor.authorKumar N.en_US
dc.contributor.authorAnsari M.N.M.en_US
dc.contributor.authorUpadhyay S.en_US
dc.contributor.authorGajraj V.en_US
dc.contributor.authorChetana S.en_US
dc.contributor.authorJoshi N.C.en_US
dc.contributor.authorSikiru S.en_US
dc.contributor.authorSen A.en_US
dc.contributor.authorid57201635180en_US
dc.contributor.authorid55489853600en_US
dc.contributor.authorid57220664508en_US
dc.contributor.authorid57209006338en_US
dc.contributor.authorid57220922604en_US
dc.contributor.authorid57200496551en_US
dc.contributor.authorid57211063469en_US
dc.contributor.authorid55620434300en_US
dc.date.accessioned2024-10-14T03:17:26Z
dc.date.available2024-10-14T03:17:26Z
dc.date.issued2023
dc.description.abstractOver the years, functional materials have been subject to intense research due mainly to their potential utilities in advancing the realm of nanotechnology. Here, a unique method is emphasized, probably for the first time, in breaking up MXene morphologies into tiny pieces using finer VO2 nanowires as templates. Scanning microscopy and X-ray spectroscopy techniques are used to describe this newly developed distinctive morphology. The morphological tension formed between the VO2 and the MXene surface significantly enhances the supercapacitive properties of VO2 at 286.0 F g?1, 2 A g?1 in a symmetric electrode configuration. The VO2 nanowire capacity increases by almost double on blending with MXene. An appreciable amount of energy is stored at 128 W h kg?1 and 1800 W kg?1. Better stability is also encountered with 97% capacity retention after the 10 000th cycle of galvanostic charge-discharge metrics. The three-dimensional cloud-like morphology of MXene surrounding VO2 nanowires helps in synergistically advancing their surface activity and safeguarding them against any pulverization. A promising good capacitive behavior can thus be built out of vanadium-based materials. � 2023 The Royal Society of Chemistry.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1039/d3tc02738d
dc.identifier.epage17033
dc.identifier.issue48
dc.identifier.scopus2-s2.0-85180766585
dc.identifier.spage17022
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85180766585&doi=10.1039%2fd3tc02738d&partnerID=40&md5=298b9e1e40992f2847a74e513902fa94
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33916
dc.identifier.volume11
dc.pagecount11
dc.publisherRoyal Society of Chemistryen_US
dc.sourceScopus
dc.sourcetitleJournal of Materials Chemistry C
dc.subjectBlending
dc.subjectFunctional materials
dc.subjectMorphology
dc.subjectNanowires
dc.subjectX ray spectroscopy
dc.subject1-D structures
dc.subjectBreakings
dc.subjectCharge storage
dc.subjectElectrode configurations
dc.subjectPotential utility
dc.subjectProperty
dc.subjectScanning microscopy
dc.subjectStorage capability
dc.subjectSymmetrics
dc.subjectX-ray spectroscopy
dc.subjectVanadium dioxide
dc.titleBlending of a 3D cloud-like morphology with a 1D structure in a VO2/MXene nanocomposite to enhance the charge storage capabilityen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections