Publication:
Applications of the nonlinear Klein/Sinh-Gordon equations in modern physics: a numerical study

dc.citedby1
dc.contributor.authorAli I.en_US
dc.contributor.authorAhmad I.en_US
dc.contributor.authorid57211855967en_US
dc.contributor.authorid57220824630en_US
dc.date.accessioned2025-03-03T07:45:51Z
dc.date.available2025-03-03T07:45:51Z
dc.date.issued2024
dc.description.abstractIn this article, a hybrid numerical scheme based on Lucas and Fibonacci polynomials in combination with St�rmer?s method for the solution of Klein/Sinh-Gordon equations is proposed. Initially, the problem is transformed to a time-discrete form by using St�rmer?s technique. Then, with the help of Fibonacci polynomials, we approximate the derivatives of the function. The suggested technique is validated to both one and two-dimensional problems. The resultant findings are compared with existing numerical solutions and presented in a tabular form. The comparison reveals the superior accuracy of the scheme. The numerical convergence of the scheme is computed in each example. ? 2024 the Author(s).en_US
dc.description.natureFinalen_US
dc.identifier.doi10.3934/mmc.2024029
dc.identifier.epage373
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85205027447
dc.identifier.spage361
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85205027447&doi=10.3934%2fmmc.2024029&partnerID=40&md5=e8261e93a9474a89e57685ed99595b4a
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36930
dc.identifier.volume4
dc.pagecount12
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.sourceScopus
dc.sourcetitleMathematical Modelling and Control
dc.titleApplications of the nonlinear Klein/Sinh-Gordon equations in modern physics: a numerical studyen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections