Publication:
Integrating multiphasic CuSx/FeSx nanostructured electrocatalyst for enhanced oxygen and hydrogen evolution reactions in saline water splitting

dc.citedby2
dc.contributor.authorMottakin M.en_US
dc.contributor.authorSukor Su'ait M.en_US
dc.contributor.authorSelvanathan V.en_US
dc.contributor.authorIbrahim M.A.en_US
dc.contributor.authorAbdullah H.en_US
dc.contributor.authorAkhtaruzzaman M.en_US
dc.contributor.authorid57195305487en_US
dc.contributor.authorid57223117728en_US
dc.contributor.authorid57160057200en_US
dc.contributor.authorid55843508000en_US
dc.contributor.authorid26025061200en_US
dc.contributor.authorid57195441001en_US
dc.date.accessioned2025-03-03T07:42:00Z
dc.date.available2025-03-03T07:42:00Z
dc.date.issued2024
dc.description.abstractThis study employed an electrodeposition approach to synthesize multiphasic CuSx and FeSx on nickel foam (NF) for application in saline water splitting. This multiphasic electrocatalyst exhibits a cauliflower morphology and develops a porous fused-type morphology upon partial oxidation. The NF/CuSx/FeSx electrode with partial oxidation exhibits the lowest overpotential of 181 mV at 10 mA/cm2 and a Tafel slope of 163 mV/decade for the oxygen evolution reaction (OER). The overpotential of 73 mV at 10 mA/cm2 and a Tafel slope of 165 mV/decade were found for the hydrogen evolution reaction (HER). A charge transfer coefficient value of ?0.5 in OER and HER indicates that the rate-determining step depends on the surface adsorption of reaction species. The presence of an unpaired electron during partial oxidation can create additional active sites and reduce solution resistance (Rs). This can improve the interaction between reactants and intermediates, improving OER and HER performance. NF/CuSx/FeSx composites demonstrated robust stability using real seawater splitting over 80 hours in HER with negligible degradation. However, catalyst breakdown in OER after 10 hours due to prolonged exposure to higher potentials, resulting in oxidative corrosion. This study offers a multiphasic electrode design using the electrodeposition technique to produce green hydrogen energy through seawater splitting. ? 2024 Elsevier B.V.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo175351
dc.identifier.doi10.1016/j.jallcom.2024.175351
dc.identifier.scopus2-s2.0-85197587964
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85197587964&doi=10.1016%2fj.jallcom.2024.175351&partnerID=40&md5=56ef8a006f250796856a0cb502688d14
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36343
dc.identifier.volume1002
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleJournal of Alloys and Compounds
dc.subjectCharge transfer
dc.subjectCopper compounds
dc.subjectCorrosion
dc.subjectElectrocatalysts
dc.subjectElectrodeposition
dc.subjectElectrodes
dc.subjectHydrogen production
dc.subjectOxidation
dc.subjectOxygen
dc.subjectSeawater
dc.subjectSurface reactions
dc.subjectHydrogen evolution reaction
dc.subjectHydrogen evolution reactions
dc.subjectMetal sulfides
dc.subjectNickel foam
dc.subjectOverpotential
dc.subjectOxygen evolution reaction
dc.subjectPartial oxidations
dc.subjectTransitional metal sulphide
dc.subjectTransitional metals
dc.subjectWater splitting
dc.subjectSulfur compounds
dc.titleIntegrating multiphasic CuSx/FeSx nanostructured electrocatalyst for enhanced oxygen and hydrogen evolution reactions in saline water splittingen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections