Publication:
Fractional view analysis of the impact of vaccination on the dynamics of a viral infection

dc.citedby14
dc.contributor.authorJan R.en_US
dc.contributor.authorHin�al E.en_US
dc.contributor.authorHosseini K.en_US
dc.contributor.authorRazak N.N.A.en_US
dc.contributor.authorAbdeljawad T.en_US
dc.contributor.authorOsman M.S.en_US
dc.contributor.authorid57205596279en_US
dc.contributor.authorid26635282900en_US
dc.contributor.authorid36903183800en_US
dc.contributor.authorid37059587300en_US
dc.contributor.authorid6508051762en_US
dc.contributor.authorid55646409100en_US
dc.date.accessioned2025-03-03T07:42:25Z
dc.date.available2025-03-03T07:42:25Z
dc.date.issued2024
dc.description.abstractViral infections pose significant threats to public health globally. Understanding the behavior, transmission, and epidemiology of viruses is essential for developing strategies to prevent, control, and manage outbreaks. Mathematical models help in identifying emerging viral pathogens, assessing their risks, and implementing effective public health measures to mitigate their impact. In this work, we formulate the dynamics of Covid-19 viral infection with the effect of vaccination in fractional framework. Our study is mainly concerned with the dynamical behavior and qualitative analysis of Covid-19 dynamics. The model is investigated for basic properties and the threshold of the system is determined. To scrutinize the solution of the recommend system, we use the fixed point theorems of Schaefer and Banach to evaluate the existence and uniqueness of solutions. Moreover, sufficient conditions for the Ulam?Hyers stability of system is established through mathematical skills. We examine the solution pathways of our model through a numerical scheme to show the importance different input parameters of the system. Our findings emphasize the pivotal role of asymptomatic carriers and losing rate of immunity as critical determinants that can heighten the challenge of controlling Covid-19. Vaccination rate and the fractional parameters are attractive parameters while asymptotic fraction poses a significant risk since it has the ability to spread the illness to uninfected areas. We suggest that effective control of the transmission rate can effectively regulate the intensity of Covid-19 transmission. ? 2024 Faculty of Engineering, Alexandria Universityen_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.aej.2024.05.080
dc.identifier.epage48
dc.identifier.scopus2-s2.0-85194898802
dc.identifier.spage36
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85194898802&doi=10.1016%2fj.aej.2024.05.080&partnerID=40&md5=097fd657ad5630ec7795c52eb182d025
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36436
dc.identifier.volume102
dc.pagecount12
dc.publisherElsevier B.V.en_US
dc.relation.ispartofAll Open Access; Gold Open Access
dc.sourceScopus
dc.sourcetitleAlexandria Engineering Journal
dc.subjectDiseases
dc.subjectEpidemiology
dc.subjectFixed point arithmetic
dc.subjectHealth risks
dc.subjectRisk assessment
dc.subjectTransmissions
dc.subjectViruses
dc.subjectBehavior analysis
dc.subjectDeveloping strategy
dc.subjectDynamical behaviors
dc.subjectEpidemic modeling
dc.subjectFractional dynamics
dc.subjectHealth measures
dc.subjectQualitative analysis
dc.subjectStability analyze
dc.subjectVaccination
dc.subjectViral infections
dc.subjectDynamics
dc.titleFractional view analysis of the impact of vaccination on the dynamics of a viral infectionen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections