Publication: Effect of neutron irradiation on microstructure and strength of Bi-2212 phase superconductor
Date
2018
Authors
Mohiju Z.A.
Mujaini M.
Hamid N.A.
Abdullah Y.
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics Publishing
Abstract
The sustainability of superconductors when exposed to radiation environment is vital for the materials to be used as components and devices in nuclear reactors. In this investigation, TRIGA MARK II research reactor with neutron flux of 2.00 � 10 11 / cm 2 s was used as the neutron source to study the effect of neutron irradiation on microstructure and physical strength of Bi 2 Sr 2 CaCu 2 (Bi-2212) superconductor. Results between non-irradiated and irradiated samples have been analyzed with respect to phase formation, microstructure and strength of the superconductor. The bulk samples were synthesized using the conventional solid-state reaction method. Molar ratio of Bi 2 O 3 , Sr 2 CO 3 , CaCO 3 , and CuO were mixed according to its ratio into composition of Bi:Sr:Ca:Cu = 2:2:1:2. The powder were palletized and sintered at 840�C for 48 hours. Characterization of the samples was done via X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that irradiation did not affect the Bi-2212 superconducting phase. From observation of the XRD pattern and microstructure, there is indication that a small amount of Bi-2212 is decomposed into Cu 2 O and other impurities while a significant amount of un-reacted Bi-2212 particles embedded at the grain boundaries. For the non-irradiated samples, the microstructure was found to be more textured and thus enhanced the strength of the samples. For the neutron irradiated samples, the results show disorganization of grains orientation and formation of porous structure that led to reduction in overall strength of the Bi-2212 superconductor. � Published under licence by IOP Publishing Ltd.
Description
Bismuth compounds; Calcite; Calcium carbonate; Copper oxides; Grain boundaries; Neutron sources; Nuclear reactors; Phase structure; Scanning electron microscopy; Solid state reactions; Superconducting materials; Sustainable development; X ray diffraction; Irradiated samples; Neutron irradiated; Phase formations; Physical strength; Porous structures; Radiation environments; Solid state reaction method; Superconducting phase; Neutron irradiation