Publication:
Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels

dc.citedby49
dc.contributor.authorNavaei A.S.en_US
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorMunisamy K.M.en_US
dc.contributor.authorYarmand H.en_US
dc.contributor.authorGharehkhani S.en_US
dc.contributor.authorid57202235458en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid15035918600en_US
dc.contributor.authorid56096104400en_US
dc.contributor.authorid56066992400en_US
dc.date.accessioned2023-05-29T05:59:38Z
dc.date.available2023-05-29T05:59:38Z
dc.date.issued2015
dc.descriptionEthylene; Ethylene glycol; Finite volume method; Geometry; Glycerol; Heat flux; Heat transfer; Nanoparticles; Nusselt number; Reynolds number; Turbulent flow; Volume fraction; Changing parameter; Corrugated channel; Grooved channel; Heat Transfer enhancement; Nanofluids; Nanoparticle diameter; Skin-friction factors; Thermal Performance; Nanofluidics; aluminum oxide nanoparticle; copper oxide nanoparticle; ethylene glycol; glycerol; nanoparticle; silica nanoparticle; unclassified drug; water; zinc oxide nanoparticle; Article; comparative study; dispersion; flow rate; fluid flow; fractionation; geometry; heat transfer; height; process optimization; simulation; thermal analysis; turbulent flow; turbulent nanofluid flow; validation processen_US
dc.description.abstractA numerical study is carried out to investigate the effects of different geometrical parameters and various nanofluids on the thermal performance of rib-grooved channels under uniform heat flux. The continuity, momentum and energy equations are solved by using the finite volume method (FVM). Three different rib-groove shapes are studied (rectangular, semi-circular and trapezoidal). Four different types of nanoparticles, Al2O3, CuO, SiO2 and ZnO with different volume fractions in the range of 1% to 4% and different nanoparticle diameters in the range of 20nm to 60nm, are dispersed in the base fluids such as water, glycerin and ethylene glycol. The Reynolds number varies from 5000 to 25,000. To optimize the shape of rib-groove channels different rib-groove heights from 0.1Dh (4mm) to 0.2Dh (8mm) and rib-groove pitch from 5e (20mm) to 7e (56mm) are examined. Simulation results reveal that the semi-circular rib-groove with height of 0.2Dh (8mm) and pitch equals to 6e (48mm) has the highest Nusselt number. The nanofluid containing SiO2 has the highest Nusselt number compared with other types. The Nusselt number rises as volume fraction increases, and it declines as the nanoparticle diameter increases. The glycerin-SiO2 nanofluid has the best heat transfer compared to other base fluids. It is also observed that in the case of using nanofluid by changing parameters such as nanoparticle diameter, volume fraction and base fluids the skin friction factor has no significant changes. � 2015 Elsevier B.V.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.powtec.2015.06.009
dc.identifier.epage341
dc.identifier.scopus2-s2.0-84940385125
dc.identifier.spage332
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84940385125&doi=10.1016%2fj.powtec.2015.06.009&partnerID=40&md5=f57eba6ef70e052bd3564fad6b36d5af
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/22211
dc.identifier.volume286
dc.publisherElsevieren_US
dc.sourceScopus
dc.sourcetitlePowder Technology
dc.titleHeat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channelsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections