Publication: Thermal study on non-Newtonian fluids through a porous channel for turbine blades
dc.citedby | 0 | |
dc.contributor.author | Zhu C.-Z. | en_US |
dc.contributor.author | Nematipour M. | en_US |
dc.contributor.author | Bina R. | en_US |
dc.contributor.author | Fayaz H. | en_US |
dc.contributor.authorid | 57205421992 | en_US |
dc.contributor.authorid | 58367458600 | en_US |
dc.contributor.authorid | 58366758700 | en_US |
dc.contributor.authorid | 58494763000 | en_US |
dc.date.accessioned | 2024-10-14T03:17:50Z | |
dc.date.available | 2024-10-14T03:17:50Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The current paper aims to utilize non-Newtonian fluid and improve the cooling performance of turbine blades. To implement impinging fluid flow through a porous channel on a hot lower wall, in the first step, the rheology of non-Newtonian behavior is introduced. Then differential quadrature procedure is used to convert these highly nonlinear equations of motion to some simple algebraic expressions. There is a reasonable agreement between the present findings with previous research work. Finally, some vital parameters such as the cross-viscosity parameter and power law index are changed to evaluate how these factors improve the cooling performance of turbine blades. The findings show that a rising Prandtle number results in a 19% decrement in temperature pattern. For a constant cross-viscosity parameter, Reynolds number enhancement leads to wall friction augmentation of around 15%. Moreover, a 32% Nusselt number increment is observed by increasing the power law index for the same Reynolds number. � 2023 The Authors | en_US |
dc.description.nature | Final | en_US |
dc.identifier.ArtNo | 103185 | |
dc.identifier.doi | 10.1016/j.csite.2023.103185 | |
dc.identifier.scopus | 2-s2.0-85163215377 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163215377&doi=10.1016%2fj.csite.2023.103185&partnerID=40&md5=2b7cea3e728a10bb82c53d71d2da5966 | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/34064 | |
dc.identifier.volume | 49 | |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | All Open Access | |
dc.relation.ispartof | Gold Open Access | |
dc.source | Scopus | |
dc.sourcetitle | Case Studies in Thermal Engineering | |
dc.subject | Non-Newtonian fluid | |
dc.subject | Numerical modeling | |
dc.subject | Nusselt number | |
dc.subject | Porous channel | |
dc.subject | Thermal investigation | |
dc.subject | Equations of motion | |
dc.subject | Flow measurement | |
dc.subject | Non Newtonian flow | |
dc.subject | Non Newtonian liquids | |
dc.subject | Nonlinear equations | |
dc.subject | Nusselt number | |
dc.subject | Reynolds number | |
dc.subject | Rheology | |
dc.subject | Turbine components | |
dc.subject | Viscosity | |
dc.subject | Viscous flow | |
dc.subject | Cooling performance | |
dc.subject | Non-Newtonian fluids | |
dc.subject | Porous channel | |
dc.subject | Power law index | |
dc.subject | Reynold number | |
dc.subject | Thermal | |
dc.subject | Thermal investigation | |
dc.subject | Thermal study | |
dc.subject | Turbine blade | |
dc.subject | Viscosity parameters | |
dc.subject | Turbomachine blades | |
dc.title | Thermal study on non-Newtonian fluids through a porous channel for turbine blades | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |