Publication:
Advances in fibre Bragg grating technology for magnetic field sensing: A review

dc.citedby3
dc.contributor.authorRostami A.en_US
dc.contributor.authorWahaab F.A.en_US
dc.contributor.authorSoleimani H.en_US
dc.contributor.authorSikiru S.en_US
dc.contributor.authorKhosravi V.en_US
dc.contributor.authorYusuff A.O.en_US
dc.contributor.authorHamza M.F.en_US
dc.contributor.authorid57192384461en_US
dc.contributor.authorid57210743667en_US
dc.contributor.authorid55556142100en_US
dc.contributor.authorid57211063469en_US
dc.contributor.authorid57202034458en_US
dc.contributor.authorid57219201379en_US
dc.contributor.authorid58285000600en_US
dc.date.accessioned2024-10-14T03:17:23Z
dc.date.available2024-10-14T03:17:23Z
dc.date.issued2023
dc.description.abstractMagnetic field sensing is crucial for various scientific and technological applications, but current methods have limitations in cost, size, and weight. Fiber Bragg Grating (FBG) magnetic field sensors have emerged as a promising alternative, offering compact size, and simplified fabrication. This review introduces FBG synthesis methods and extensively discusses the three primary magneto-optic mechanisms for magnetic field sensing: Faraday effect, magnetic fluid, and magnetostrictive materials. We evaluate their advantages and disadvantages, with Faraday effect relying on the Verdet constant and facing complexity in measurement elements. FBG magnetic sensing with magnetic fluid shows promising sensitivity and versatility but is challenged by optical loss-induced errors. Magnetostrictive materials provide robustness but exhibit limited linearity. Future research should focus on addressing these challenges to enhance the reliability of FBGs for magnetic sensing. The findings highlight the exceptional potential of FBGs in advancing magnetic field sensing applications. � 2023 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo113482
dc.identifier.doi10.1016/j.measurement.2023.113482
dc.identifier.scopus2-s2.0-85172451946
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85172451946&doi=10.1016%2fj.measurement.2023.113482&partnerID=40&md5=54ebd552924a34bd44397a5280cc4973
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33884
dc.identifier.volume221
dc.publisherElsevier B.V.en_US
dc.sourceScopus
dc.sourcetitleMeasurement: Journal of the International Measurement Confederation
dc.subjectFaraday effect
dc.subjectFibre Bragg grating
dc.subjectMagnetic field sensor
dc.subjectMagnetic fluid
dc.subjectMagnetostrictive materials
dc.subjectFaraday effect
dc.subjectMagnetic fluids
dc.subjectMagnetic sensors
dc.subjectMagnetometers
dc.subjectMagnetostrictive devices
dc.subjectOptical sensors
dc.subject'current
dc.subjectCompact size
dc.subjectFiber bragg grating technologies
dc.subjectIn-fiber Bragg gratings
dc.subjectMagnetic field sensing
dc.subjectMagnetic fields sensors
dc.subjectMagnetic sensing
dc.subjectMagnetostrictive material
dc.subjectScientific applications
dc.subjectTechnological applications
dc.subjectFiber Bragg gratings
dc.titleAdvances in fibre Bragg grating technology for magnetic field sensing: A reviewen_US
dc.typeReviewen_US
dspace.entity.typePublication
Files
Collections