Publication:
Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids

dc.citedby53
dc.contributor.authorTokit E.M.en_US
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorYusoff M.Z.en_US
dc.contributor.authorid35756670600en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid7003976733en_US
dc.date.accessioned2023-12-28T06:30:18Z
dc.date.available2023-12-28T06:30:18Z
dc.date.issued2012
dc.description.abstractAn interrupted microchannel heat sink (IMCHS) using nanofluids as working fluids is analyzed numerically to increase the heat transfer rate. The rectangular IMCHS is designed with length and width of 10mm and 0.057mm respectively while optimum cut section number, n c=3. The three dimensional governing equations (continuity, momentum and energy) were solved using finite volume method (FVM). Parametric study of thermal performance between pure water-cooled and nanofluid-cooled IMCHS are evaluated for particle diameter in the range of, 30nm to 60nm, volume fraction in the range of, 1% to 4%,nanofluid type of Al 2O 3, CuO, and SiO 2 at Reynolds number range of 140 to 1034 are examined. The effects of the transport properties, nanofluid type, nanoparticle volume fraction and particle diameter are investigated on the IMCHS performance. It is inferred that the Nu number for IMCHS is higher than the conventional MCHS with a slight increase of the pressure drop. It is found that highest thermal augmentation is predicted for Al 2O 3, followed by CuO, and finally for SiO 2 in terms of Nu nf/Nu pw in the IMCHS. The Nu number increased with the increase of nanoparticle volume fraction and with the decrease of nanoparticle diameter. � 2012 Elsevier Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.icheatmasstransfer.2012.10.013
dc.identifier.epage1604
dc.identifier.issue10
dc.identifier.scopus2-s2.0-84869201995
dc.identifier.spage1595
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84869201995&doi=10.1016%2fj.icheatmasstransfer.2012.10.013&partnerID=40&md5=7c67a54bba26de03b802c16185041670
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/29513
dc.identifier.volume39
dc.pagecount9
dc.sourceScopus
dc.sourcetitleInternational Communications in Heat and Mass Transfer
dc.subjectHeat transfer enhancement
dc.subjectInterrupted microchannel heat sink
dc.subjectNanofluid
dc.subjectOptimization
dc.subjectFinite volume method
dc.subjectHeat sinks
dc.subjectHigh pressure effects
dc.subjectMixed convection
dc.subjectNanoparticles
dc.subjectOptimization
dc.subjectParticle size
dc.subjectReynolds number
dc.subjectTransport properties
dc.subjectVolume fraction
dc.subjectGoverning equations
dc.subjectHeat Transfer enhancement
dc.subjectHeat transfer rate
dc.subjectMicro channel heat sinks
dc.subjectNanofluids
dc.subjectNanoparticle diameter
dc.subjectNu number
dc.subjectParametric study
dc.subjectParticle diameters
dc.subjectThermal Performance
dc.subjectWorking fluid
dc.subjectNanofluidics
dc.titleThermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluidsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections