Publication: Refined energy-conserving dissipative particle dynamics model with temperature-dependent properties and its application in solidification problem
No Thumbnail Available
Date
2017
Authors
Ng K.C.
Sheu T.W.H.
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Abstract
It has been observed previously that the physical behaviors of Schmidt number (Sc) and Prandtl number (Pr) of an energy-conserving dissipative particle dynamics (eDPD) fluid can be reproduced by the temperature-dependent weight function appearing in the dissipative force term. In this paper, we proposed a simple and systematic method to develop the temperature-dependent weight function in order to better reproduce the physical fluid properties. The method was then used to study a variety of phase-change problems involving solidification. The concept of the "mushy" eDPD particle was introduced in order to better capture the temperature profile in the vicinity of the solid-liquid interface, particularly for the case involving high thermal conductivity ratio. Meanwhile, a way to implement the constant temperature boundary condition at the wall was presented. The numerical solutions of one- and two-dimensional solidification problems were then compared with the analytical solutions and/or experimental results and the agreements were promising. � 2017 American Physical Society.
Description
Energy conservation; Phase interfaces; Prandtl number; Solidification; Constant temperature; Dissipative particle dynamics; Dissipative particle dynamics model; High thermal conductivity; Solid-liquid interfaces; Temperature dependent; Temperature-dependent properties; Two-dimensional solidification; Thermal conductivity; article; thermal conductivity