Publication:
Influence of nanofluids on parallel flow square microchannel heat exchanger performance

dc.citedby91
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorBhaskaran G.en_US
dc.contributor.authorShuaib N.H.en_US
dc.contributor.authorAbu-Mulaweh H.I.en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid36717364100en_US
dc.contributor.authorid13907934500en_US
dc.contributor.authorid7003564408en_US
dc.date.accessioned2023-12-29T07:49:26Z
dc.date.available2023-12-29T07:49:26Z
dc.date.issued2011
dc.description.abstractThe effects of using various types of nanofluids and Reynolds numbers on heat transfer and fluid flow characteristics in a square shaped microchannel heat exchanger (MCHE) is numerically investigated in this study. The performance of an aluminum MCHE with four different types of nanofluids (aluminum oxide (Al2O3), silicon dioxide (SiO2), silver (Ag), and titanium dioxide (TiO2)), with three different nanoparticle volume fractions of 2%, 5% and 10% using water as base fluid is comprehensively analyzed. The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a balanced MCHE are solved using the finite volume method. The MCHE performance is evaluated in terms of temperature profile, heat transfer rate, heat transfer coefficient, pressure drop, wall shear stress pumping power, effectiveness, and overall performance index. The results reveal that nanofluids can enhance the thermal properties and performance of the heat exchanger while having a slight increase in pressure drop. It was also found that increasing the Reynolds number causes the pumping power to increase and the effectiveness to decrease. � 2010 Elsevier Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.icheatmasstransfer.2010.09.007
dc.identifier.epage9
dc.identifier.issue1
dc.identifier.scopus2-s2.0-78650275409
dc.identifier.spage1
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78650275409&doi=10.1016%2fj.icheatmasstransfer.2010.09.007&partnerID=40&md5=216b8b56607eb27379b67c162dcb29ba
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30557
dc.identifier.volume38
dc.pagecount8
dc.sourceScopus
dc.sourcetitleInternational Communications in Heat and Mass Transfer
dc.subjectHeat transfer
dc.subjectMicrochannel heat exchanger
dc.subjectNanofluids
dc.subjectNumerical
dc.subjectParallel flow
dc.subjectAluminum
dc.subjectHeat exchangers
dc.subjectHeat transfer
dc.subjectMicrochannels
dc.subjectOrganic polymers
dc.subjectParallel flow
dc.subjectPressure drop
dc.subjectPumps
dc.subjectReynolds number
dc.subjectSilica
dc.subjectSilicon oxides
dc.subjectThermodynamic properties
dc.subjectTitanium
dc.subjectTitanium dioxide
dc.subjectWalls (structural partitions)
dc.subjectAluminum oxides
dc.subjectConjugate heat transfer
dc.subjectDeveloping Flow
dc.subjectGoverning equations
dc.subjectHeat transfer and fluid flow
dc.subjectHeat transfer rate
dc.subjectIncrease in pressure
dc.subjectMicrochannel heat exchanger
dc.subjectNanofluids
dc.subjectNumerical
dc.subjectParallel flows
dc.subjectPerformance indices
dc.subjectPumping power
dc.subjectSilicon dioxide
dc.subjectTemperature profiles
dc.subjectThermal properties
dc.subjectTiO
dc.subjectWall shear stress
dc.subjectNanofluidics
dc.titleInfluence of nanofluids on parallel flow square microchannel heat exchanger performanceen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections