Publication:
ZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices

dc.citedby9
dc.contributor.authorYeganeh Ghotbi M.en_US
dc.contributor.authorSikiru S.en_US
dc.contributor.authorRajabi A.en_US
dc.contributor.authorSoleimani H.en_US
dc.contributor.authorKou L.en_US
dc.contributor.authorAnsari M.N.M.en_US
dc.contributor.authorRamachandaramurthy V.K.en_US
dc.contributor.authorid24484463700en_US
dc.contributor.authorid57211063469en_US
dc.contributor.authorid56622591700en_US
dc.contributor.authorid55556142100en_US
dc.contributor.authorid57200000963en_US
dc.contributor.authorid55489853600en_US
dc.contributor.authorid6602912020en_US
dc.date.accessioned2025-03-03T07:44:07Z
dc.date.available2025-03-03T07:44:07Z
dc.date.issued2024
dc.description.abstractVarious approaches have been applied to increase the capacity of electric double layer capacitors (EDLC) by increasing the accessible surface area of the electrode material (mainly carbon) for electrolyte ions. One method is to make the active material particles smaller or use graphite-based carbon with less thickness. Another method involves doping carbon materials with some group III and V elements to create pseudo-capacitive properties. And finally, hybridization/combination of carbon with some metal compounds due to the inductive synergistic effect. Using the idea of layered nanoreactors, we prepared a ZnO/ZnS/S-doped carbon nanocomposite, i.e. producing a metal oxide/sulfide with a heteroatom-doped carbon material, simultaneously. ZnO/ZnS/carbon nanocomposite was acid washed to remove ZnO and obtain ZnS/C; ZnS/carbon nanocomposite was again acid washed to remove ZnS and obtain S-doped carbon material. ZnO/ZnS/S-doped carbon, ZnS/S-doped carbon nanocomposites and S-doped carbon materials showed the specific capacitance (Cs) values of 119, 1048 and 454F/g, respectively, when used as the active material in the three-electrode system. In addition, the S-doped carbon material showed a Cs value of 57F/g when used as the active material in the fabrication of a symmetric commercial-like supercapacitor device. ? 2024 Elsevier B.V.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo150018
dc.identifier.doi10.1016/j.cej.2024.150018
dc.identifier.scopus2-s2.0-85186526427
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85186526427&doi=10.1016%2fj.cej.2024.150018&partnerID=40&md5=5717608b7d5f00a4425c8acd630c0282
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36714
dc.identifier.volume485
dc.publisherElsevier B.V.en_US
dc.sourceScopus
dc.sourcetitleChemical Engineering Journal
dc.subjectElectrodes
dc.subjectElectrolytes
dc.subjectII-VI semiconductors
dc.subjectNanocomposites
dc.subjectNanoreactors
dc.subjectSulfur
dc.subjectSupercapacitor
dc.subjectZinc oxide
dc.subjectActive material
dc.subjectCarbon material
dc.subjectCarbon nanocomposite
dc.subjectDoped carbons
dc.subjectEnergy
dc.subjectLayered nanoreactor
dc.subjectS values
dc.subjectS-doped
dc.subjectS-doped carbon
dc.subjectZnO/ZnS
dc.subjectZinc sulfide
dc.titleZnO/ZnS/Carbon Nanocomposite-Derived Sulfur-Doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devicesen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections