Publication:
Lauric acid based form-stable phase change material for effective electronic thermal management and energy storage application

dc.citedby4
dc.contributor.authorBhutto Y.A.en_US
dc.contributor.authorPandey A.K.en_US
dc.contributor.authorIslam A.en_US
dc.contributor.authorRajamony R.K.en_US
dc.contributor.authorSaidur R.en_US
dc.contributor.authorid58491549600en_US
dc.contributor.authorid36139061100en_US
dc.contributor.authorid57222517480en_US
dc.contributor.authorid57218845246en_US
dc.contributor.authorid6602374364en_US
dc.date.accessioned2025-03-03T07:41:34Z
dc.date.available2025-03-03T07:41:34Z
dc.date.issued2024
dc.description.abstractPoor thermal management in electronic systems can lead to higher junction temperatures, accelerating failure mechanisms and reducing component lifespan. Integrating efficient thermal management techniques, such as heat sinks, is essential for ensuring durability and efficiency of electronic equipment. Heat sinks have limited capacity, but integrating phase change materials (PCMs) enhances cooling performance by harnessing latent heat storage. However, leakage and low thermal conductivity limit PCM's effectiveness. The current study developed highly conductive leakage-proof PCMs based composites using an ultrasonic and vacuum impregnation method with lauric acid as base, hexagonal boron nitride and expanded graphite as additives. The results demonstrate persistence of chemical integrity, as proven by FTIR analysis, and complete encapsulation of PCMs inside the expanded graphite structures. The form-stable composite PCMs exhibit a 450% increase in thermal conductivity and 77% photo-transmittance decrease compared to base PCMs. Despite a trade-off of a 11.5% reduction in latent heat, the composite demonstrates thermal stability up to 220 �C. Further, excellent chemical and thermal reliability is maintained even after 500 cycles. Furthermore, in thermal management for heat sink, the form stable composite efficiently dispersed heat, resulting in a 16 �C decrease in peak temperature compared to the heat sink without the composite. ? 2024 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo100931
dc.identifier.doi10.1016/j.mtsust.2024.100931
dc.identifier.scopus2-s2.0-85200554676
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85200554676&doi=10.1016%2fj.mtsust.2024.100931&partnerID=40&md5=f9f003d1b60272439ad17d792982c255
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36204
dc.identifier.volume28
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleMaterials Today Sustainability
dc.subjectAdditives
dc.subjectBoron nitride
dc.subjectEconomic and social effects
dc.subjectElectronic cooling
dc.subjectFailure (mechanical)
dc.subjectHeat sinks
dc.subjectHeat storage
dc.subjectIII-V semiconductors
dc.subjectLatent heat
dc.subjectStorage (materials)
dc.subjectTemperature control
dc.subjectThermal conductivity
dc.subjectThermal management (electronics)
dc.subjectElectronics cooling
dc.subjectElectronics system
dc.subjectElectronics thermal managements
dc.subjectEnergy storage applications
dc.subjectExpanded graphite
dc.subjectForm stabilities
dc.subjectForm stable phase change material
dc.subjectHigher junction temperatures
dc.subjectLauric acid
dc.subjectThermal energy storage
dc.subjectPhase change materials
dc.titleLauric acid based form-stable phase change material for effective electronic thermal management and energy storage applicationen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections