Publication:
An investigation on titanium doping in reduced graphene oxide by RF magnetron sputtering for dye-sensitized solar cells

Date
2019
Authors
Low F.W.
Lai C.W.
Asim N.
Akhtaruzzaman M.
Alghoul M.
Tiong S.K.
Amin N.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Research Projects
Organizational Units
Journal Issue
Abstract
A study investigating the effects of titanium (Ti)atoms sputtered from different sources on substrate distance was attempted in order to effectively dope a reduced graphene oxide (rGO)thin film surface. Factors such as crystallinity, morphology, phase formation, light absorption, and surface chemical state of rGO-TiO2 were investigated. As a result, functional groups or chemical states revealed the presence of Ti-O-C in rGO-TiO2 nanocomposite after the sputtering process. The titanium source from the target was of Ti3+ species as determined using X-ray photoelectron spectroscopy (XPS). It was found that average sized Ti3+ ions of around 59.4 nm were incorporated into the rGO nanosheet. A customized Dye-Sensitized Solar Cells (DSSCs)device was fabricated with the photo-anode consisting of sputtered rGO-TiO2 nanocomposite. After optimization, the Ti target allocated with 10 cm-apart FTO glass-coated rGO nanosheet and 0.67 cm2 active area exhibited an ideal PCE of 6.60%, which is remarkably higher than the usual 5 cm sputtering distance the sample (1.90%)had achieved. � 2019
Description
Crystallinity; Doping (additives); Graphene; Light absorption; Magnetron sputtering; Morphology; Nanosheets; Oxide minerals; Reduced Graphene Oxide; Semiconductor doping; TiO2 nanoparticles; Titanium dioxide; Titanium metallography; X ray photoelectron spectroscopy; Phase formations; Reduced graphene oxides (RGO); rf-Magnetron sputtering; Sputtering process; Substrate distance; Surface chemical state; Thin film surfaces; Titanium doping; Dye-sensitized solar cells; chemical compound; detection method; equipment; fuel cell; inorganic compound; nanocomposite; titanium
Keywords
Citation
Collections