Publication:
Building a novel noble metal-free Cu3P/ZnS/g-C3N4 ternary nanocomposite with multi interfacial charge transfer pathways for highly enhanced photocatalytic water splitting

dc.citedby1
dc.contributor.authorRameshbabu R.en_US
dc.contributor.authorSiaw Paw J.K.en_US
dc.contributor.authorKaviyarasan K.en_US
dc.contributor.authorJadoun S.en_US
dc.contributor.authorAmalraj J.en_US
dc.contributor.authorKiong T.S.en_US
dc.contributor.authorVald�s H.en_US
dc.contributor.authorid55621066400en_US
dc.contributor.authorid57883504000en_US
dc.contributor.authorid57875524600en_US
dc.contributor.authorid57189469761en_US
dc.contributor.authorid8203356700en_US
dc.contributor.authorid57216824752en_US
dc.contributor.authorid14523781400en_US
dc.date.accessioned2025-03-03T07:42:16Z
dc.date.available2025-03-03T07:42:16Z
dc.date.issued2024
dc.description.abstractFor renewable energy, it is crucial to create effective photocatalysts with enhanced photo charge separation and transfer to produce photocatalytic hydrogen (H2) efficiently utilizing light energy. Due to their distinct qualities and features, carbonaceous materials have so far been shown to be high-performance co-catalysts to substitute some conventionally costly metal materials in photocatalytic water splitting. Here, a novel ternary nanocomposite, simple hydrothermal process ball milling assisted and wet impregnation approach, a promising ternary nanocomposite is created as an efficient solar light driven photocatalyst. Utilizing a variety of analytical techniques, 3 % Cu3P/ZnS/g-C3N4 nanocomposites as catalysts were characterized in order to check the hydrogen production and investigate their structural properties. The hydrogen production capability of the catalyst is studied by irradiating Na2SO3 + Na2S solutes using a halogen bulb (250 W). The results demonstrated that in terms of photocatalytic activity towards H2 production, 3 % Cu3P/ZnS/g-C3N4 catalyst performed better than 3 % Cu3P/ZnS, Cu3P, ZnS, and g-C3N4. A composite containing 7.5 wt% g-C3N4 demonstrated exceptional durability during photocatalytic hydrogen production, resulting in a 23,086 mol h?1 g?1 rate. Higher stability in electron-hole pairs created a higher absorption level of solar light could be responsible for this remarkable performance. ? 2024 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo131907
dc.identifier.doi10.1016/j.fuel.2024.131907
dc.identifier.scopus2-s2.0-85193203416
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85193203416&doi=10.1016%2fj.fuel.2024.131907&partnerID=40&md5=f8d57f4ebefe0daf78e768b40e6c4d86
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36406
dc.identifier.volume371
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleFuel
dc.subjectBall milling
dc.subjectCharge transfer
dc.subjectHydrogen production
dc.subjectII-VI semiconductors
dc.subjectImage enhancement
dc.subjectNanocomposites
dc.subjectPhotocatalytic activity
dc.subjectPrecious metals
dc.subjectSodium sulfide
dc.subjectSolar light
dc.subjectSolar power generation
dc.subjectEnergy
dc.subjectG-C3N4
dc.subjectH 2 production
dc.subjectInterfacial charge transfer
dc.subjectMetal free
dc.subjectPerformance
dc.subjectPhotocatalytic water splitting
dc.subjectTernary nanocomposites
dc.subjectTransfer pathway
dc.subject]+ catalyst
dc.subjectZinc sulfide
dc.titleBuilding a novel noble metal-free Cu3P/ZnS/g-C3N4 ternary nanocomposite with multi interfacial charge transfer pathways for highly enhanced photocatalytic water splittingen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections