Publication:
Surfactant effects in functionalized multiwall carbon nanotube-filled phase change materials

dc.citedby1
dc.contributor.authorFikri M.A.en_US
dc.contributor.authorPandey A.K.en_US
dc.contributor.authorRajamony R.K.en_US
dc.contributor.authorSharma K.en_US
dc.contributor.authorKalidasan B.en_US
dc.contributor.authorSamykano M.en_US
dc.contributor.authorBuddhi D.en_US
dc.contributor.authorTyagi V.V.en_US
dc.contributor.authorid57580364400en_US
dc.contributor.authorid36139061100en_US
dc.contributor.authorid57218845246en_US
dc.contributor.authorid56047171100en_US
dc.contributor.authorid57221543258en_US
dc.contributor.authorid57192878324en_US
dc.contributor.authorid56594817400en_US
dc.contributor.authorid15078199200en_US
dc.date.accessioned2025-03-03T07:41:35Z
dc.date.available2025-03-03T07:41:35Z
dc.date.issued2024
dc.description.abstractEnergy storage using phase change materials (PCM) is an efficient way to harness thermal energy from solar energy due to its higher storage density, particularly for medium-temperature applications. However, the PCMs have lower thermal conductivity; owing to this, the thermal performance and heat transfer rate are inadequate. To address this challenge, the current work explores the integration of carbon-based nanoparticles into the PCM to enhance thermal conductivity and overall performance. In the present study, a novel functionalized multi-walled carbon nanotube (FMWCNT) dispersed in organic PCM in different weight fractions (0.1, 0.3, 0.5, 0.7 and 1.0 %) with and without surfactant is investigated. A two-step technique was employed to prepare nano enhanced phase change material (NePCM), with subsequent assessment of its thermophysical properties. Findings reveal a remarkable enhancement in thermal conductivity, with a staggering 150.7 % at 1.0 wt% FMWCNT without surfactant and a substantial 110.2 % improvement in the presence of surfactant. Furthermore, the Ultraviolet?visible spectrum (UV?Vis) demonstrates an 84.56 % reduction in transmittance compared to pure organic PCM. Furthermore, the prepared NePCM are thermally stable up to 405 �C and no chemical reaction takes place. Importantly, the best optimal nanocomposites chemical and thermal properties were evaluated for 500 heating and cooling cycles to ensure reliability. Remarkably, the inclusion of surfactant on FMWCNT enhanced PCM has minimal impact on thermophysical properties. ? 2024en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo129931
dc.identifier.doi10.1016/j.matchemphys.2024.129931
dc.identifier.scopus2-s2.0-85203406638
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85203406638&doi=10.1016%2fj.matchemphys.2024.129931&partnerID=40&md5=e1b2f2723960691de81ba2c80bf82149
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36207
dc.identifier.volume328
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleMaterials Chemistry and Physics
dc.subjectThermal conductivity
dc.subjectEnergy
dc.subjectFunctionalized
dc.subjectFunctionalized multi-walled carbon nanotubes
dc.subjectOrganic phase
dc.subjectPhase Change
dc.subjectProperty
dc.subjectSurfactants effect
dc.subjectThermal
dc.subjectThermal energy storage
dc.subjectThermophysical
dc.subjectMultiwalled carbon nanotubes (MWCN)
dc.titleSurfactant effects in functionalized multiwall carbon nanotube-filled phase change materialsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections