Publication: Feasibility comparison of HAC algorithm on usability performance and self-reported metric features for MAR learning
dc.citedby | 2 | |
dc.contributor.author | Cheng L.K. | en_US |
dc.contributor.author | Selamat A. | en_US |
dc.contributor.author | Zabil M.H.M. | en_US |
dc.contributor.author | Selamat M.H. | en_US |
dc.contributor.author | Alias R.A. | en_US |
dc.contributor.author | Puteh F. | en_US |
dc.contributor.author | Mohamed F. | en_US |
dc.contributor.author | Krejcar O. | en_US |
dc.contributor.author | Herrera-Viedma E. | en_US |
dc.contributor.author | Fujita H. | en_US |
dc.contributor.authorid | 57188850203 | en_US |
dc.contributor.authorid | 24468984100 | en_US |
dc.contributor.authorid | 35185866500 | en_US |
dc.contributor.authorid | 57215520379 | en_US |
dc.contributor.authorid | 25928253600 | en_US |
dc.contributor.authorid | 57202529348 | en_US |
dc.contributor.authorid | 55416008900 | en_US |
dc.contributor.authorid | 14719632500 | en_US |
dc.contributor.authorid | 7004240703 | en_US |
dc.contributor.authorid | 35611951900 | en_US |
dc.date.accessioned | 2023-05-29T06:53:49Z | |
dc.date.available | 2023-05-29T06:53:49Z | |
dc.date.issued | 2018 | |
dc.description | Augmented reality; Cluster analysis; Learning systems; Usability engineering; Agglomerative clustering; English language teaching; Mobile augmented reality; Unsupervised machine learning; Usability; Clustering algorithms | en_US |
dc.description.abstract | This paper highlights the current literatures in usability studies, performance metrics, self-reported metrics and hierarchical agglomerative clustering algorithms. A literature review is done in these three areas of studies to find a research gap that can be explored further. The paper will then propose a research methodology to study comparatively feature selection based on performance and self-reported usability data. This paper will highlight methods used to compare the feasibility and performance of hierarchical agglomerative clustering algorithms on both performance and self-reported data. The results of the experiment will then be presented and discussed before proceeding to the conclusion and future works of this study. � 2018 The authors and IOS Press. All rights reserved. | en_US |
dc.description.nature | Final | en_US |
dc.identifier.doi | 10.3233/978-1-61499-900-3-896 | |
dc.identifier.epage | 910 | |
dc.identifier.scopus | 2-s2.0-85063371964 | |
dc.identifier.spage | 896 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063371964&doi=10.3233%2f978-1-61499-900-3-896&partnerID=40&md5=9c72d727ad676ea7143553e5d7e09813 | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/23979 | |
dc.identifier.volume | 303 | |
dc.publisher | IOS Press | en_US |
dc.source | Scopus | |
dc.sourcetitle | Frontiers in Artificial Intelligence and Applications | |
dc.title | Feasibility comparison of HAC algorithm on usability performance and self-reported metric features for MAR learning | en_US |
dc.type | Conference Paper | en_US |
dspace.entity.type | Publication |