Publication: FACILE SYNTHESIS OF CHLORIDE-LESS ZIRCONIUM-BASED METAL-ORGANIC FRAMEWORK (MOF) AS CHROMIUM (VI) REMOVAL VIA PHOTOREDUCTION
Date
2021
Authors
Bahari A.M.S.
Zulkifli N.H.
Azmin A.N.
Alias N.
Rosli S.A.
Sazalli N.A.H.
Lockman Z.
Amin N.
Misran H.
Journal Title
Journal ISSN
Volume Title
Publisher
Microscopy Society of Malaysia
Abstract
Zirconia based metal-organic framework (Zr-MOF) is widely known as hydrostable and thermally stable MOF structures. However, general synthesis method of Zr-MOF usually employed chloride-based materials to enhance overall crystallinity. The use of chloride-based compounds may hinder the scale-up production of Zr-MOF as it generates scheduled liquid waste and is generally corrosive. In this study, UiO-66, a Zr-MOF was successfully synthesized for the first time without using chloride ions (Cl-) at room temperature in an attempt for a �green� and facile synthesis. In this method, metal-organic framework formation at various metal salt (Zr2+ )-to-DMF ratio in with or without the presence of Cl- as well as its effect on relative crystallinity of UiO-66 were investigated. Decreasing the Zr2+-to-DMF ratio resulted in increased relative crystallinity (RC) regardless of Cl-. All samples exhibited X-ray diffraction peaks corresponding to (111), (002) and (022) reflection planes suggesting successful UiO-66 formation. Results obtained in this study suggested that UiO-66 with lower RC exhibited highest photoreduction efficiency of Cr (IV) at ca. 54 % in 5 ppm solution with reduction rate of 0.0028 min-1 . Higher RC value was suggested to decrease overall active sites for photoreduction reaction to occur resulting in less photoreduction efficiency. � Malaysian Journal of Microscopy (2021).