Publication:
Enhancing Thermal Energy Storage: Investigating the Use of Graphene Nanoplatelets in Phase Change Materials for Sustainable Applications

dc.citedby3
dc.contributor.authorMuppana V.N.en_US
dc.contributor.authorFikri M.A.en_US
dc.contributor.authorSamykano M.en_US
dc.contributor.authorSuraparaju S.K.en_US
dc.contributor.authorRajamony R.K.en_US
dc.contributor.authorWan Hamzah W.A.en_US
dc.contributor.authorKadirgama K.en_US
dc.contributor.authorid59126945300en_US
dc.contributor.authorid57580364400en_US
dc.contributor.authorid57192878324en_US
dc.contributor.authorid57210569066en_US
dc.contributor.authorid57218845246en_US
dc.contributor.authorid56711151600en_US
dc.contributor.authorid12761486500en_US
dc.date.accessioned2025-03-03T07:42:54Z
dc.date.available2025-03-03T07:42:54Z
dc.date.issued2024
dc.description.abstractThe adoption of phase change materials (PCMs) for thermal energy storage in low- and medium-temperature settings is witnessing a notable surge. However, the lesser thermal conductivity (TC) poses a noteworthy challenge to PCM's heat transfer and storage capabilities. One of the noteworthy solutions to augment the TC is incorporating nanoparticles in the PCM. Nevertheless, nanoparticles often clump together after several cycles due to poor compatibility and weak interfacial strength. Functionalization methods have been proposed to address this issue, offering improved performance for energy storage applications. Herein, graphene nanoplatelets (GNP) and functionalized graphene nanoplatelets (FGNP) are dispersed into A70 PCM at mass fractions ranging from 0.1 to 1.0 wt% using two-step method. Fourier transform infrared analysis confirms the successful integration of FGNP into A70 PCM without altering its chemical characteristics. Adding 1.0 wt% FGNP to A70 PCM increases its TC by 140.88%, with just a 3.02% decrease in latent heat enthalpy. However, incorporating pure GNP (1.0 wt%) improves TC by 48.83%. The engineered nano-PCMs exhibit robust thermal and chemical stability even after undergoing 1000 thermal cycles, remaining unchanged up to 414.64 �C. This exceptional stability makes the formulated nanoenhanced PCM suitable for sustainable thermal applications. ? 2024 Wiley-VCH GmbH.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo2400302
dc.identifier.doi10.1002/ente.202400302
dc.identifier.issue7
dc.identifier.scopus2-s2.0-85193038578
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85193038578&doi=10.1002%2fente.202400302&partnerID=40&md5=cac8519c8e85d7a8be5721782739484f
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36530
dc.identifier.volume12
dc.publisherJohn Wiley and Sons Incen_US
dc.sourceScopus
dc.sourcetitleEnergy Technology
dc.subjectChemical stability
dc.subjectGraphene
dc.subjectHeat storage
dc.subjectHeat transfer
dc.subjectNanoparticles
dc.subjectStorage (materials)
dc.subjectThermal conductivity
dc.subjectThermal energy
dc.subjectFunctionalizations
dc.subjectFunctionalized graphene
dc.subjectGraphene nanoplatelets
dc.subjectIn-phase
dc.subjectLows-temperatures
dc.subjectMaterial functionalization
dc.subjectMedium temperature
dc.subjectNanoenhanced phase change material
dc.subjectTemperature setting
dc.subjectThermal energy storage
dc.subjectPhase change materials
dc.titleEnhancing Thermal Energy Storage: Investigating the Use of Graphene Nanoplatelets in Phase Change Materials for Sustainable Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections