Publication:
CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst

dc.citedby18
dc.contributor.authorNumpilai T.en_US
dc.contributor.authorKahadit S.en_US
dc.contributor.authorWitoon T.en_US
dc.contributor.authorAyodele B.V.en_US
dc.contributor.authorCheng C.K.en_US
dc.contributor.authorSiri-Nguan N.en_US
dc.contributor.authorSornchamni T.en_US
dc.contributor.authorWattanakit C.en_US
dc.contributor.authorChareonpanich M.en_US
dc.contributor.authorLimtrakul J.en_US
dc.contributor.authorid56896137000en_US
dc.contributor.authorid57221913710en_US
dc.contributor.authorid23487511100en_US
dc.contributor.authorid56862160400en_US
dc.contributor.authorid57204938666en_US
dc.contributor.authorid55770826900en_US
dc.contributor.authorid6507994399en_US
dc.contributor.authorid54416661200en_US
dc.contributor.authorid6602303015en_US
dc.contributor.authorid7003474789en_US
dc.date.accessioned2023-05-29T09:08:02Z
dc.date.available2023-05-29T09:08:02Z
dc.date.issued2021
dc.descriptionAluminum compounds; Carbon dioxide; Catalysts; Iron compounds; Light olefins; CO2 hydrogenation; Composite catalysts; Effect of catalyst; Efficient catalysts; Hydrocarbon product; Light olefins yield; Physical mixtures; Theoretical values; Indium compoundsen_US
dc.description.abstractDirect CO2 conversion to light olefins offers a chance to reduce CO2 emission with generating the revenue. However, a lack of efficient catalysts is a barrier for promoting this technology to an industrial scale. Here, we report a new catalytic system using a composite catalyst containing In2O3/SAPO-34 and Fe-Co/K-Al2O3 to enhance the light olefins yield. The effect of catalysts bed configuration including a physical mixture of In2O3/SAPO-34 with Fe-Co/K-Al2O3 (M-InS/Fe-Co), a dual-layer packing of In2O3/SAPO-34 followed by Fe-Co/K-Al2O3 (T-InS/B-FeCo) and a dual-layer packing of Fe-Co/K-Al2O3 above In2O3/SAPO-34 (T-FeCo/B-InS) is investigated. The M-InS/Fe-Co and T-FeCo/B-InS catalysts show a light olefins yield of 11.5 and 16.2% which are lower than that (18.9%) of the single Fe-Co/K-Al2O3 catalyst. A drastic reduction in the BET surface area (42 m2�g?1) of M-InS/Fe-Co catalyst compared to its theoretical value of 198 m2�g?1 is observed, suggesting the pores blockage. The T-InS/B-FeCo composite catalyst achieves a state-of the art light olefins yield of 21.5% due to a selective CO2 conversion to light olefins over In2O3/SAPO-34 and a highly active CO2 conversion to hydrocarbon over Fe-Co/K-Al2O3 which further converts the remaining CO2 from the former catalyst bed to light olefins and other hydrocarbon products until equilibrium CO2 conversion is reached. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s11244-021-01412-5
dc.identifier.epage327
dc.identifier.issue5-Jun
dc.identifier.scopus2-s2.0-85100564197
dc.identifier.spage316
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85100564197&doi=10.1007%2fs11244-021-01412-5&partnerID=40&md5=00eb3f1355960d562af751ecee6aee59
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/26230
dc.identifier.volume64
dc.publisherSpringeren_US
dc.sourceScopus
dc.sourcetitleTopics in Catalysis
dc.titleCO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalysten_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections