Publication:
Effect of Cu2Te Back Surface Interfacial Layer on Cadmium Telluride Thin Film Solar Cell Performance from Numerical Analysis

dc.citedby1
dc.contributor.authorHarif M.N.en_US
dc.contributor.authorDoroody C.en_US
dc.contributor.authorNadzri A.en_US
dc.contributor.authorNisham Rosly H.en_US
dc.contributor.authorAhmad N.I.en_US
dc.contributor.authorIsah M.en_US
dc.contributor.authorAmin N.en_US
dc.contributor.authorid22634024000en_US
dc.contributor.authorid56905467200en_US
dc.contributor.authorid56592995800en_US
dc.contributor.authorid36873451800en_US
dc.contributor.authorid57200991933en_US
dc.contributor.authorid57219626175en_US
dc.contributor.authorid7102424614en_US
dc.date.accessioned2024-10-14T03:18:25Z
dc.date.available2024-10-14T03:18:25Z
dc.date.issued2023
dc.description.abstractEven though substantial advances made in the device configuration of the frontal layers of the superstrate cadmium telluride (CdTe) solar cell device have contributed to conversion efficiency, unresolved challenges remain in regard to controlling the self-compensation and minority carrier recombination at the back contact that limits the efficiency. In this study, a SCAPS-1D simulator was used to analyze the loss mechanism and performance limitations due to the band-bending effect upon copper chloride treatment and subsequent Cu2Te layer formation as the back contact buffer layer. The optimal energy bandgap range for the proposed back surface layer of Cu2Te is derived to be in the range of 1.1 eV to 1.3 eV for the maximum conversion efficiency, i.e., around 21.3%. Moreover, the impacts of absorber layer�s carrier concentration with respect to CdTe film thickness, bandgap, and operational temperature are analyzed. The optimized design reveals that the acceptor concentration contributes significantly to the performance of the CdTe devices, including spectral response. Consequently, the optimized thickness of the CdTe absorber layer with a Cu-based back contact is found to be 2.5 �m. Moreover, the effect of temperature ranging from 30 �C to 100 �C as the operating condition of the CdTe thin-film solar cells is addressed, which demonstrates an increasing recombination tread once the device temperature exceeds 60 �C, thus affecting the stability of the solar cells. � 2023 by the authors.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo848
dc.identifier.doi10.3390/cryst13050848
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85160447006
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85160447006&doi=10.3390%2fcryst13050848&partnerID=40&md5=33e1198a14041111556d1ce75e45754b
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/34203
dc.identifier.volume13
dc.publisherMDPIen_US
dc.relation.ispartofAll Open Access
dc.relation.ispartofGold Open Access
dc.sourceScopus
dc.sourcetitleCrystals
dc.subjectcadmium telluride
dc.subjectdoping concentration
dc.subjectenergy
dc.subjectSCAPS
dc.subjectsolar photovoltaic cells
dc.subjectthin film
dc.titleEffect of Cu2Te Back Surface Interfacial Layer on Cadmium Telluride Thin Film Solar Cell Performance from Numerical Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections