Publication:
WSN sensor node placement approach based on multi-objective optimization

dc.citedby1
dc.contributor.authorAbidin H.Z.en_US
dc.contributor.authorDin N.M.en_US
dc.contributor.authorRadzi N.A.M.en_US
dc.contributor.authorid52165115900en_US
dc.contributor.authorid9335429400en_US
dc.contributor.authorid57218936786en_US
dc.date.accessioned2023-05-16T02:45:53Z
dc.date.available2023-05-16T02:45:53Z
dc.date.issued2014
dc.description.abstractWireless Sensor Network (WSN) with maximum coverage, minimum energy consumption and guaranteed connectivity can be achieved through an optimum sensor node placement scheme. A sensor node placement algorithm that utilizes Multi-objective Territorial Predator Scent Marking Algorithm (MOTPSMA) is presented in this paper. The MOTPSMA deployed in this paper uses the minimum uncovered area and minimum energy consumption as the objective functions subject to full connectivity constraint. The performance of the WSN deployed with MOTPSMA is then compared with another algorithm known as Multi-objective Evolutionary Algorithm based on Fuzzy Dominance (MOEA/DFD) in terms of coverage ratio, connectivity and energy consumption. Simulation results show that the WSN deployed with the proposed sensor node placement algorithm provides a larger coverage ratio, full connectivity and lower energy consumption. © 2014 IEEE.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo6863007
dc.identifier.doi10.1109/tenconspring.2014.6863007
dc.identifier.epage115
dc.identifier.scopus2-s2.0-84911951781
dc.identifier.spage111
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84911951781&doi=10.1109%2ftenconspring.2014.6863007&partnerID=40&md5=c469a19db2061f54387f436c9d92b799
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/21887
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceScopus
dc.sourcetitleIEEE TENSYMP 2014 - 2014 IEEE Region 10 Symposium
dc.titleWSN sensor node placement approach based on multi-objective optimizationen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
Files
Collections