Publication:
Voltage balancing of a 320-V, 12-F electric double-layer capacitor bank combined with a 10-kW bidirectional isolated DC-DC converter

dc.citedby80
dc.contributor.authorTan N.M.L.en_US
dc.contributor.authorInoue S.en_US
dc.contributor.authorKobayashi A.en_US
dc.contributor.authorAkagi H.en_US
dc.contributor.authorid24537965000en_US
dc.contributor.authorid12769863300en_US
dc.contributor.authorid26324311700en_US
dc.contributor.authorid7102912290en_US
dc.date.accessioned2023-12-29T07:54:53Z
dc.date.available2023-12-29T07:54:53Z
dc.date.issued2008
dc.description.abstractdouble-layer capacitors (EDLCs) have attributes that feature high power density, quick charge/discharge time, long life cycle, and environmental friendliness. These attributes accord for increased appeal in employing the EDLCs as energy-storage devices in renewable energy systems, industrial applications, and hybrid electric vehicles as compared to other mature static energy-storage devices. This paper describes the construction of a 320-V, 12-F EDLC energy-storage bank connected to a bidirectional isolated dc--dc converter. Two types of EDLC bank configurations are considered with emphasis on their voltage-balancing circuits. Subsequently, this paper proposes a voltage-balancing circuit based on a center-tapped transformer, and includes its experimental verifications. It also discusses the charge--discharge and self-starting operation of the EDLC energy-storage system. During the charge--discharge operation, a low ripple current flowing in the EDLC bank is observed, leading to a theoretical analysis. The EDLC bank is also successfully charged to its rated voltage without any external dc charging circuit. � 2008 IEEE.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1109/TPEL.2008.2005388
dc.identifier.epage2765
dc.identifier.issue6
dc.identifier.scopus2-s2.0-59749088838
dc.identifier.spage2755
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-59749088838&doi=10.1109%2fTPEL.2008.2005388&partnerID=40&md5=eba824d6405ff4479e00bd8853c658e4
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30863
dc.identifier.volume23
dc.pagecount10
dc.sourceScopus
dc.sourcetitleIEEE Transactions on Power Electronics
dc.subjectBidirectional isolated dc-dc converter
dc.subjectElectric double-layer capacitor (EDLC)
dc.subjectVoltage balancing
dc.subjectAutomobiles
dc.subjectCapacitance
dc.subjectCapacitors
dc.subjectControl system stability
dc.subjectDC-DC converters
dc.subjectDielectric devices
dc.subjectElectric automobiles
dc.subjectElectric discharges
dc.subjectElectric network analysis
dc.subjectElectric vehicles
dc.subjectHVDC power transmission
dc.subjectHybrid systems
dc.subjectIndustrial applications
dc.subjectLife cycle
dc.subjectPower converters
dc.subjectA centers
dc.subjectBidirectional isolated dc-dc converter
dc.subjectCharge/discharge
dc.subjectDc converters
dc.subjectDouble-layer capacitors
dc.subjectElectric double-layer capacitor (EDLC)
dc.subjectEnergy-storage systems
dc.subjectEnvironmental friendliness
dc.subjectExperimental verifications
dc.subjectHigh power densities
dc.subjectHybrid electric vehicles
dc.subjectLong lives
dc.subjectLow ripples
dc.subjectRated voltages
dc.subjectRenewable energy systems
dc.subjectSelf-starting
dc.subjectStatic energies
dc.subjectStorage devices
dc.subjectVoltage balancing
dc.subjectVoltage-balancing circuits
dc.subjectRenewable energy resources
dc.titleVoltage balancing of a 320-V, 12-F electric double-layer capacitor bank combined with a 10-kW bidirectional isolated DC-DC converteren_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections