Publication:
Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger

dc.citedby33
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorBhaskaran G.en_US
dc.contributor.authorShuaib N.H.en_US
dc.contributor.authorSaidur R.en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid36717364100en_US
dc.contributor.authorid13907934500en_US
dc.contributor.authorid6602374364en_US
dc.date.accessioned2023-12-29T07:48:28Z
dc.date.available2023-12-29T07:48:28Z
dc.date.issued2011
dc.description.abstractThis paper reports a numerical analysis of the performance of a counter-flow rectangular shaped microchannel heat exchanger (MCHE) using nanofluids as the working fluids. Finite volume method was used to solve the three-dimensional steady, laminar developing flow and conjugate heat transfer in aluminum MCHE. The nanofluids used were Ag, Al2O3, CuO, SiO2, and TiO2 and the performance was compared with water. The thermal, flow fields and performance of the MCHE were analyzed using different nanofluids, different Reynolds numbers and different nanoparticle concentrations. Temperature profile, heat transfer coefficient, pressure profile, and wall shear stress were obtained from the simulations and the performance was discussed in terms of heat transfer rate, pumping power, effectiveness, and performance index. Results indicated enhanced performance with the usage of nanofluids, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The increase in nanoparticle concentration also yielded better performance at the expense of increased pressure drop. � 2011 Published by Elsevier Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.spmi.2011.06.003
dc.identifier.epage233
dc.identifier.issue3
dc.identifier.scopus2-s2.0-80051797795
dc.identifier.spage215
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-80051797795&doi=10.1016%2fj.spmi.2011.06.003&partnerID=40&md5=7cadfe453e216566a223959fd69e3dc8
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30493
dc.identifier.volume50
dc.pagecount18
dc.sourceScopus
dc.sourcetitleSuperlattices and Microstructures
dc.subjectHeat transfer enhancement
dc.subjectNanofluids
dc.subjectNumerical modeling
dc.subjectRectangular microchannel heat exchanger
dc.subjectCooling systems
dc.subjectFinite volume method
dc.subjectHeat exchangers
dc.subjectHeat transfer coefficients
dc.subjectMicrochannels
dc.subjectNanoparticles
dc.subjectNumerical analysis
dc.subjectPressure drop
dc.subjectReynolds number
dc.subjectSilicon compounds
dc.subjectSpecific heat
dc.subjectTitanium dioxide
dc.subjectBulk temperatures
dc.subjectCold fluid
dc.subjectConjugate heat transfer
dc.subjectDeveloping Flow
dc.subjectEnhanced performance
dc.subjectHeat Transfer enhancement
dc.subjectHeat transfer rate
dc.subjectMicrochannel heat exchanger
dc.subjectNanofluids
dc.subjectNanoparticle concentrations
dc.subjectNumerical modeling
dc.subjectNumerical studies
dc.subjectPerformance indices
dc.subjectPressure profiles
dc.subjectPumping power
dc.subjectRectangular microchannels
dc.subjectTemperature profiles
dc.subjectTiO
dc.subjectWall shear stress
dc.subjectWorking fluid
dc.subjectNanofluidics
dc.titleNumerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchangeren_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections