Publication:
Magnetotransport properties of La0.67Ca0.33MnO 3 with different grain sizes

dc.citedby13
dc.contributor.authorEwe L.S.en_US
dc.contributor.authorHamadneh I.en_US
dc.contributor.authorSalama H.en_US
dc.contributor.authorHamid N.A.en_US
dc.contributor.authorHalim S.A.en_US
dc.contributor.authorAbd-Shukor R.en_US
dc.contributor.authorid58032789200en_US
dc.contributor.authorid8214114100en_US
dc.contributor.authorid57217761321en_US
dc.contributor.authorid6604077116en_US
dc.contributor.authorid57204202636en_US
dc.contributor.authorid7004750914en_US
dc.date.accessioned2023-12-29T07:56:08Z
dc.date.available2023-12-29T07:56:08Z
dc.date.issued2009
dc.description.abstractThe magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator-metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (?271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ?-T 2 curves are nearly linear in the metallic regime, but the ?-T 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn-Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect. � 2008 Springer-Verlag.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s00339-008-4908-1
dc.identifier.epage463
dc.identifier.issue2
dc.identifier.scopus2-s2.0-62349137513
dc.identifier.spage457
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-62349137513&doi=10.1007%2fs00339-008-4908-1&partnerID=40&md5=b1dc53cecc054bfabd6694c16888421e
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30932
dc.identifier.volume95
dc.pagecount6
dc.relation.ispartofAll Open Access; Green Open Access
dc.sourceScopus
dc.sourcetitleApplied Physics A: Materials Science and Processing
dc.subjectActivation energy
dc.subjectCalcium
dc.subjectCharge carriers
dc.subjectElectric resistance
dc.subjectGrain size and shape
dc.subjectInsulation
dc.subjectLanthanum
dc.subjectMagnetic fields
dc.subjectManganese
dc.subjectManganese compounds
dc.subjectMetal insulator transition
dc.subjectOxide minerals
dc.subjectPerovskite
dc.subjectDensity of state
dc.subjectElectrical resistivities
dc.subjectEnergy of electrons
dc.subjectGrain sizes
dc.subjectHigh temperatures
dc.subjectHigher temperatures
dc.subjectInsulator-metal transition temperatures
dc.subjectInter grains
dc.subjectJahn-teller distortions
dc.subjectMagneto transports
dc.subjectMagneto-transport properties
dc.subjectMagnetoresistive
dc.subjectMetallic regimes
dc.subjectSmall polaron hopping models
dc.subjectSpin tunneling
dc.subjectTemperature curves
dc.subjectTemperature dependences
dc.subjectVariable range hopping models
dc.subjectZero fields
dc.subjectCurve fitting
dc.titleMagnetotransport properties of La0.67Ca0.33MnO 3 with different grain sizesen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections