Publication:
A comprehensive photovoltaic study on tungsten disulfide (WS2) buffer layer based CdTe solar cell

dc.citedby5
dc.contributor.authorEmon E.I.en_US
dc.contributor.authorIslam A.M.en_US
dc.contributor.authorSobayel M.K.en_US
dc.contributor.authorIslam S.en_US
dc.contributor.authorAkhtaruzzaman M.en_US
dc.contributor.authorAmin N.en_US
dc.contributor.authorAhmed A.en_US
dc.contributor.authorRashid M.J.en_US
dc.contributor.authorid57221378098en_US
dc.contributor.authorid57221381145en_US
dc.contributor.authorid57194049079en_US
dc.contributor.authorid57192298975en_US
dc.contributor.authorid57195441001en_US
dc.contributor.authorid7102424614en_US
dc.contributor.authorid23072379600en_US
dc.contributor.authorid56754641100en_US
dc.date.accessioned2024-10-14T03:18:37Z
dc.date.available2024-10-14T03:18:37Z
dc.date.issued2023
dc.description.abstractTransition metal di-chalcogenides (TMCDs)-Tungsten disulfide (WS2) exhibit excellent optoelectronic properties such as suitable bandgap, high absorption coefficient, good conductivity, high carrier mobility, etc. to be used as a photovoltaic material for thin-film solar cells. In the present work, we have replaced the traditional buffer CdS and ITO/ZnO window layer in CdTe solar cells with the non-toxic, earth-abundant WS2 buffer and SnO2 window layer, respectively. The SCAPS-1D solar simulator is used to investigate the potentiality of WS2 as buffer material in CdTe solar cells. This numerical study provides a comparison of the performances between the proposed structure: SnO2/WS2/CdTe/Au and the baseline structure: ITO/ZnO/CdS/CdTe/Au. The impacts of the charge carrier generation rate, spectral response, current-voltage characteristics, bulk defect density, defect density at buffer/absorber interface, operating temperature, and capacitance-voltage characteristics on the solar cell performance parameters have also been analyzed. The tolerance level of defect density in WS2 bulk and WS2/CdTe interface are found to be 1017 cm?3 and 1012 cm?3, respectively. The temperature study reveals the poor structural robustness and thermal stability of the proposed cell. The conversion efficiency of the proposed cell has found to be 20.55% at the optimized device structure. Nevertheles, these findings may provide an insight to fabricate viable, environment friendly, and inexpensive CdTe thin-film solar cells. � 2023en_US
dc.description.natureFinalen_US
dc.identifier.ArtNoe14438
dc.identifier.doi10.1016/j.heliyon.2023.e14438
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85150162922
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85150162922&doi=10.1016%2fj.heliyon.2023.e14438&partnerID=40&md5=3f81c14e0662ed812c125df1b9e82e27
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/34246
dc.identifier.volume9
dc.publisherElsevier Ltden_US
dc.relation.ispartofAll Open Access
dc.relation.ispartofGold Open Access
dc.sourceScopus
dc.sourcetitleHeliyon
dc.subjectBuffer layer
dc.subjectCdTe Solar cell
dc.subjectNumerical study
dc.subjectTransition metal di-chalcogenides (TMCDs)
dc.subjectTungsten disulfide (WS<sub>2</sub>)
dc.titleA comprehensive photovoltaic study on tungsten disulfide (WS2) buffer layer based CdTe solar cellen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections