Publication:
Conducting polymer as potential retrofitting material for gas diffusion electrode to enhance microbial electrosynthesis: State-of-the-art review

dc.citedby6
dc.contributor.authorBalachandran K.en_US
dc.contributor.authorYeo R.Y.Z.en_US
dc.contributor.authorAbu Bakar M.H.en_US
dc.contributor.authorAng W.L.en_US
dc.contributor.authorSalehmin M.N.I.en_US
dc.contributor.authorFontmorin J.-M.en_US
dc.contributor.authorLim S.S.en_US
dc.contributor.authorid58535382200en_US
dc.contributor.authorid57408285400en_US
dc.contributor.authorid57195067276en_US
dc.contributor.authorid56076613000en_US
dc.contributor.authorid55628787200en_US
dc.contributor.authorid55260199400en_US
dc.contributor.authorid36608404200en_US
dc.date.accessioned2025-03-03T07:45:05Z
dc.date.available2025-03-03T07:45:05Z
dc.date.issued2024
dc.description.abstractMicrobial electrosynthesis (MES) have been proven effective at reducing carbon dioxide (CO2) and synthesizing valuable organic commodities with the aid of electrical energy. The development of highly productive MES is challenging due to low bacterial loading, low electron transfer rate, and low solubility of CO2, which can decrease the production of relevant chemicals and further limit the future potential of upscaling. Many innovations have been established to upscale the system including the application of gas diffusion electrodes (GDEs) in a three-chambered MES system. To date, two types of commercially available GDEs have been employed in MES: polytetrafluoroethylene (PTFE) and carbon-based GDEs. The process of bacterial adhesion on the electrolyte-facing side of the GDE is influenced by material surface properties, such as surface charge, wettability, roughness, and area. Thus, a suitable material is required to modify the aforementioned GDE surfaces. Recently, researchers have been keen on modifying bio-electrodes with conducting polymers in microbial fuel cells and MES as they show fascinating outcomes. Moreover, modifying GDEs using conducting polymers (CPs) is well-established in fuel cells but highly lacking in MES. Several modification strategies can be adopted in MES, such as the microporous layer (MPL) coating, CP MPL, and CP-based MPL. Last, the present review features possible modifications of carbon-based GDE using CPs and its challenges. ? 2023 Hydrogen Energy Publications LLCen_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.ijhydene.2023.11.055
dc.identifier.epage957
dc.identifier.scopus2-s2.0-85179716905
dc.identifier.spage932
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85179716905&doi=10.1016%2fj.ijhydene.2023.11.055&partnerID=40&md5=9bb422e5cf4b27a0f3fcfedb9caa1360
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36840
dc.identifier.volume55
dc.pagecount25
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleInternational Journal of Hydrogen Energy
dc.subjectCarbon dioxide
dc.subjectConducting polymers
dc.subjectDiffusion in gases
dc.subjectElectrodes
dc.subjectElectrolytes
dc.subjectMicrobial fuel cells
dc.subjectSurface properties
dc.subjectBiofilm formation
dc.subjectCarbon-based
dc.subjectElectrical energy
dc.subjectElectron transfer rates
dc.subjectGas diffusion electrodes
dc.subjectMicrobial electrosynthesis
dc.subjectMicroporous layers
dc.subjectOrganics
dc.subjectState-of-the art reviews
dc.subjectUpscaling
dc.subjectBiocompatibility
dc.titleConducting polymer as potential retrofitting material for gas diffusion electrode to enhance microbial electrosynthesis: State-of-the-art reviewen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections