Publication:
Fabrication of Cu2SnS3 thin film solar cells by sulphurization of sequentially sputtered Sn/CuSn metallic stacked precursors

dc.citedby21
dc.contributor.authorHossain E.S.en_US
dc.contributor.authorChelvanathan P.en_US
dc.contributor.authorShahahmadi S.A.en_US
dc.contributor.authorBais B.en_US
dc.contributor.authorAkhtaruzzaman M.en_US
dc.contributor.authorTiong S.K.en_US
dc.contributor.authorSopian K.en_US
dc.contributor.authorAmin N.en_US
dc.contributor.authorid57196058952en_US
dc.contributor.authorid35766323200en_US
dc.contributor.authorid55567116600en_US
dc.contributor.authorid9638472600en_US
dc.contributor.authorid57195441001en_US
dc.contributor.authorid15128307800en_US
dc.contributor.authorid7003375391en_US
dc.contributor.authorid7102424614en_US
dc.date.accessioned2023-05-29T07:30:58Z
dc.date.available2023-05-29T07:30:58Z
dc.date.issued2019
dc.descriptionCopper compounds; Copper metallography; Deposition; Efficiency; Energy gap; Fabrication; IV-VI semiconductors; Layered semiconductors; Metals; Solar power generation; Thin film solar cells; Thin films; Tin metallography; Fabrication technique; Microstructural degradation; P type conductivity; Photovoltaic devices; Photovoltaic technology; Polycrystalline film; Secondary phase; Thin-film depositions; Tin compounds; correlation; decomposition; degradation; efficiency measurement; electronic equipment; equipment; film; fuel cell; inorganic compound; performance assessment; photovoltaic system; technological changeen_US
dc.description.abstractIn this present work, we report a novel fabrication technique of ternary Cu2SnS3 (CTS) thin films by sulphurization of sequentially sputtered Sn/CuSn (elemental/alloy) stacked metallic precursors. The focal aim of our investigation is on the impact of metallic precursors� Cu/Sn ratio on the overall material properties of CTS films, which in turn, influence the photovoltaic device performance. All CTSs exhibited polycrystalline films with a mixture monoclinic CTS and orthorhombic SnS compound, p-type conductivity, and optical band gap in the range of 0.84�0.90 eV. Metallic precursor with Cu/Sn ratio of 1.09 produced optimum CTS film with post-sulphurization Cu/Sn ratio of 1.98 and highest conversion efficiency of 0.71%, respectively, despite exhibiting pronounced formation of SnS secondary phase. The correlation between XRD, Raman, and SEM-EDX outcomes revealed that CTS films from metallic precursors with Cu/Sn ratio higher than 1.09 undergo severe microstructural degradation due to Sn-loss through decomposition of volatile SnS phase and consequently, resulted in poorer absorber layer quality and lower device performance. Finally, several efficiency impeding factors are discussed and practical propostions to overcome them are presented. � 2018 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.solener.2018.10.081
dc.identifier.epage273
dc.identifier.scopus2-s2.0-85056565604
dc.identifier.spage262
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056565604&doi=10.1016%2fj.solener.2018.10.081&partnerID=40&md5=8bb77954b6d63ba494a0990d0da6cc55
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/25046
dc.identifier.volume177
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleSolar Energy
dc.titleFabrication of Cu2SnS3 thin film solar cells by sulphurization of sequentially sputtered Sn/CuSn metallic stacked precursorsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections