Publication:
Multi-step-ahead prediction of river flow using NARX neural networks and deep learning LSTM

No Thumbnail Available
Date
2022
Authors
Hayder G.
Solihin M.I.
Najwa M.R.N.
Journal Title
Journal ISSN
Volume Title
Publisher
IWA Publishing
Research Projects
Organizational Units
Journal Issue
Abstract
Kelantan river (Sungai Kelantan in Malaysia) basin is one of the essential catchments as it has a history of flood events. Numerous studies have been conducted in river basin modelling for the prediction of flow and mitigation of flooding events as well as water resource management. Therefore, having multi-step-ahead forecasting for river flow (RF) is of important research interest in this regard. This study presents four different approaches for multi-step-ahead forecasting for the Kelantan RF, using NARX (nonlinear autoregressive with exogenous inputs) neural networks and deep learning recurrent neural networks called LSTM (long short-term memory). The dataset used was obtained in monthly record for 29 years between January 1988 and December 2016. The results show that two recursive methods using NARX and LSTM are able to do multi-step-ahead forecasting on 52 series of test datasets with NSE (Nash-Sutcliffe efficiency coefficient) values of 0.44 and 0.59 for NARX and LSTM, respectively. For few-step-ahead forecasting, LSTM with direct sequence-to-sequence produces promising results with a good NSE value of 0.75 (in case of two-step-ahead forecasting). However, it needs a larger data size to have better performance in longer-stepahead forecasting. Compared with other studies, the data used in this study is much smaller. � 2022 The Authors
Description
Keywords
Citation
Collections