Publication: A hybrid statistical modelling, normalization and inferencing techniques of an off-line signature verification system
dc.citedby | 5 | |
dc.contributor.author | Ahmad S.M.S. | en_US |
dc.contributor.author | Shakil A. | en_US |
dc.contributor.author | Faudzi M.A. | en_US |
dc.contributor.author | Anwar R.Md. | en_US |
dc.contributor.author | Balbed M.A.M. | en_US |
dc.contributor.authorid | 24721182400 | en_US |
dc.contributor.authorid | 24722081200 | en_US |
dc.contributor.authorid | 35193815200 | en_US |
dc.contributor.authorid | 24721188400 | en_US |
dc.contributor.authorid | 24721384800 | en_US |
dc.date.accessioned | 2023-12-28T07:30:44Z | |
dc.date.available | 2023-12-28T07:30:44Z | |
dc.date.issued | 2009 | |
dc.description.abstract | This paper presents an automatic off-line signature verification system that is built using several statistical techniques .The learning phase involves the use of Hidden Markov Modelling (HMM) technique to build a reference model for each local feature extracted from a set of signature samples of a particular user. The verification phase uses three layers of statistical techniques.. The first layer involves the computation of the HMM-based log-likelihood probability match score. The second layer performs the mapping of this score into soft boundary ranges of acceptance or rejection through the use of z-score analysis and normalization function. Next Bayesian inference technique is used to arrive at the final decision of accepting or rejecting a given signature sample. � 2008 IEEE. | en_US |
dc.description.nature | Final | en_US |
dc.identifier.ArtNo | 5170651 | |
dc.identifier.doi | 10.1109/CSIE.2009.973 | |
dc.identifier.epage | 11 | |
dc.identifier.scopus | 2-s2.0-71049169291 | |
dc.identifier.spage | 6 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-71049169291&doi=10.1109%2fCSIE.2009.973&partnerID=40&md5=7fc2316377f5f6eae42c4feb1da1899a | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/29674 | |
dc.identifier.volume | 6 | |
dc.pagecount | 5 | |
dc.source | Scopus | |
dc.sourcetitle | 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009 | |
dc.subject | Bayesian inference | |
dc.subject | Hidden Markov Model (HMM) | |
dc.subject | Computer science | |
dc.subject | Hidden Markov models | |
dc.subject | Inference engines | |
dc.subject | Probability density function | |
dc.subject | Bayesian inference | |
dc.subject | Final decision | |
dc.subject | Hidden Markov Model (HMM) | |
dc.subject | Learning phase | |
dc.subject | Local feature | |
dc.subject | Log likelihood | |
dc.subject | Match score | |
dc.subject | Off-line signature verification | |
dc.subject | Reference models | |
dc.subject | Second layer | |
dc.subject | Statistical modelling | |
dc.subject | Statistical techniques | |
dc.subject | Three-layer | |
dc.subject | Z-score analysis | |
dc.subject | Bayesian networks | |
dc.title | A hybrid statistical modelling, normalization and inferencing techniques of an off-line signature verification system | en_US |
dc.type | Conference paper | en_US |
dspace.entity.type | Publication |