Publication:
Influence of temperature reaction for the CdSe-TiO2 nanotube thin film formation via chemical bath deposition in improving the photoelectrochemical activity

No Thumbnail Available
Date
2020
Authors
Lai C.W.
Samsudin N.A.
Low F.W.
Abd Samad N.A.
Lau K.S.
Chou P.M.
Tiong S.K.
Amin N.
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Research Projects
Organizational Units
Journal Issue
Abstract
In this present work, we report the deposition of cadmium selenide (CdSe) particles on titanium dioxide (TiO2) nanotube thin films, using the chemical bath deposition (CBD) method at low deposition temperatures ranging from 20 to 60 �C. The deposition temperature had an influence on the overall CdSe-TiO2 nanotube thin film morphologies, chemical composition, phase transition, and optical properties, which, in turn, influenced the photoelectrochemical performance of the samples that were investigated. All samples showed the presence of CdSe particles in the TiO2 nanotube thin film lattice structures with the cubic phase CdSe compound. The amount of CdSe loading on the TiO2 nanotube thin films were increased and tended to form agglomerates as a function of deposition temperature. Interestingly, a significant enhancement in photocurrent density was observed for the CdSe-TiO2 nanotube thin films deposited at 20 �C with a photocurrent density of 1.70 mA cm-2, which was 17% higher than the bare TiO2 nanotube thin films. This sample showed a clear surface morphology without any clogged nanotubes, leading to better ion diffusion, and, thus, an enhanced photocurrent density. Despite having the least CdSe loading on the TiO2 nanotube thin films, the CdSe-TiO2 nanotube thin films deposited at 20 �C showed the highest photocurrent density, which confirmed that a small amount of CdSe is enough to enhance the photoelectrochemical performance of the sample. � 2020 by the authors.
Description
Deposition; Electrochemistry; II-VI semiconductors; Morphology; Nanotubes; Optical properties; Oxide minerals; Photocurrents; Selenium compounds; Surface morphology; Thin films; Titanium dioxide; Chemical compositions; Chemical-bath deposition; Deposition temperatures; Low deposition temperature; Photoelectrochemical performance; Photoelectrochemicals; Thin film morphology; Titanium dioxides (TiO2); Cadmium compounds
Keywords
Citation
Collections