Publication:
Nanophotonic-structured front contact for high-performance perovskite solar cells

dc.citedby3
dc.contributor.authorAkhtaruzzaman M.en_US
dc.contributor.authorHossain M.I.en_US
dc.contributor.authorIslam M.A.en_US
dc.contributor.authorShahiduzzaman M.en_US
dc.contributor.authorMuhammad G.en_US
dc.contributor.authorMahmud Hasan A.K.en_US
dc.contributor.authorTsang Y.H.en_US
dc.contributor.authorSopian K.en_US
dc.contributor.authorid57195441001en_US
dc.contributor.authorid57212814509en_US
dc.contributor.authorid57657507100en_US
dc.contributor.authorid55640096500en_US
dc.contributor.authorid56605566900en_US
dc.contributor.authorid55505342800en_US
dc.contributor.authorid7007101167en_US
dc.contributor.authorid7003375391en_US
dc.date.accessioned2023-05-29T09:37:09Z
dc.date.available2023-05-29T09:37:09Z
dc.date.issued2022
dc.descriptionAbsorption spectroscopy; Chromium compounds; Conversion efficiency; Electron transport properties; Light; Light absorption; Magnetron sputtering; Metals; Nanophotonics; Open circuit voltage; Perovskite; Perovskite solar cells; Zinc oxide; Device stability; Electrical effects; Magnetron-sputtering; Optic and electrical effect; Optoelectronics devices; Optoelectronics property; Performance; Ultra-violet light; Ultraviolet stability; ZnO:cr front contact; II-VI semiconductorsen_US
dc.description.abstractWe report the design of a nanophotonic metal-oxide front contact aimed at perovskite solar cells (PSCs) to enhance optoelectronic properties and device stability in the presence of ultraviolet (UV) light. High-quality Cr-doped ZnO film was prepared by industrially feasible magnetron sputter deposition for the electron transport layer of PSCs. As a means, the influence of the Cr content on the film and device was systematically determined. In-depth device optics and electrical effects were studied using advanced three-dimensional opto-electrical multiphysics rigorous simulations, optimizing the front contact for realizing high performance. The numerical simulation was validated by fabricating PSCs optimized to reach high performance, energy conversion efficiency (ECE) = 17.3%, open-circuit voltage (VOC) = 1.08 V, short-circuit current density (JSC) = 21.1 mA cm?2, and fill-factor (FF) = 76%. Finally, a realistic front contact of nanophotonic architecture was proposed while improving broadband light absorption of the solar spectrum and light harvesting, resulting in enhanced quantum efficiency (QE). The nanophotonic PSC enables JSC improvement by ?17% while reducing the reflection by 12%, resulting in an estimated conversion efficiency over 23%. It is further demonstrated how the PSCs� UV-stability can be improved without considerably sacrificing optoelectronic performances. Particulars of nanophotonic designed ZnO:Cr front contact, PSCs device, and fabrication process are described. [Figure not available: see fulltext.]. � 2022, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s40843-021-1973-y
dc.identifier.epage1740
dc.identifier.issue7
dc.identifier.scopus2-s2.0-85126440811
dc.identifier.spage1727
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85126440811&doi=10.1007%2fs40843-021-1973-y&partnerID=40&md5=6b6ca861b1927ada44b96b6cf9f03f90
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/26843
dc.identifier.volume65
dc.publisherScience Press (China)en_US
dc.relation.ispartofAll Open Access, Bronze
dc.sourceScopus
dc.sourcetitleScience China Materials
dc.titleNanophotonic-structured front contact for high-performance perovskite solar cellsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections