Publication:
Enhanced variational iteration method using adomian polynomials for solving the chaotic lorenz system

dc.citedby1
dc.contributor.authorGoh S.M.en_US
dc.contributor.authorMossa Al-Sawalha M.en_US
dc.contributor.authorNoorani M.S.M.en_US
dc.contributor.authorHashim I.en_US
dc.contributor.authorid25521891600en_US
dc.contributor.authorid55664495900en_US
dc.contributor.authorid6603683028en_US
dc.contributor.authorid10043682500en_US
dc.date.accessioned2023-12-29T07:51:44Z
dc.date.available2023-12-29T07:51:44Z
dc.date.issued2010
dc.description.abstractA merger of two numeric-analytic methods poses various challenges, but also holds promise. Such a fusion could enhance the performance of calculations and may also overcome certain drawbacks of each used individually. This paper focuses on solving the chaotic Lorenz system, a three-dimensional system of ordinary differential equations with quadratic nonlinearities, using a newly designed hybrid algorithm merging multistage variational iteration method with Adomian polynomials. The core of this algorithm is made by surrogating the nonlinear terms in the variational iteration method with Adomian polynomials. Numerical comparisons are made between the hybrid and the classic fourth-order Runge-Kutta method. Our work demonstrates that the multistage hybrid provides good accuracy and efficiency for the chaotic Lorenz system. �Freund Publishing House Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1515/IJNSNS.2010.11.9.689
dc.identifier.epage700
dc.identifier.issue9
dc.identifier.scopus2-s2.0-78650066950
dc.identifier.spage689
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78650066950&doi=10.1515%2fIJNSNS.2010.11.9.689&partnerID=40&md5=cfc8bcb61419e4d3651dce02b5c90762
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30714
dc.identifier.volume11
dc.pagecount11
dc.publisherWalter de Gruyter GmbHen_US
dc.sourceScopus
dc.sourcetitleInternational Journal of Nonlinear Sciences and Numerical Simulation
dc.subjectAdomian polynomials
dc.subjectLorenz system
dc.subjectRunge-Kutta method
dc.subjectVariational iteration method
dc.titleEnhanced variational iteration method using adomian polynomials for solving the chaotic lorenz systemen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections