Publication:
Enhancing Thermal Conductivity and Heat Transfer Performance with Nanocellulose-Based Nanofluids: A Comprehensive Study

dc.citedby0
dc.contributor.authorAqeel A.A.K.A.en_US
dc.contributor.authorHajjaj S.S.H.en_US
dc.contributor.authorMohamed H.en_US
dc.contributor.authorObeidat F.S.en_US
dc.contributor.authorid57680214800en_US
dc.contributor.authorid55812832600en_US
dc.contributor.authorid57136356100en_US
dc.contributor.authorid57201367589en_US
dc.date.accessioned2025-03-03T07:46:16Z
dc.date.available2025-03-03T07:46:16Z
dc.date.issued2024
dc.description.abstractThis article investigates how nanocellulose might improve heat transmission by creating and analyzing nanofluids. Interest has been sparked by the improved thermal properties of nanofluids, which are made up of nanoparticles scattered throughout base fluids. In this work, nanofluids with various volume concentrations of cellulose nanocrystals (CNC) are made by dispersing the CNC in distilled water and ethylene glycol. Stirring and ultrasonication are used to guarantee stability throughout the preparation process. Thermal conductivity experiments show that the presence of CNC nanoparticles significantly increases thermal conductivity, indicating a proportionate connection between volume concentration and temperature. According to density measurements, temperature and volume concentration affect nanofluid density, with more significant concentrations and lower temperatures resulting in greater density. Overall, this study demonstrates the potential of nanofluids based on nanocellulose to improve heat transmission while revealing essential details about their production, stability, and thermal characteristics. These discoveries substantially influence environmental science, medicine, and materials engineering. They also offer opportunities for improved thermal management systems. ? The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/978-3-031-70684-4_6
dc.identifier.epage83
dc.identifier.scopus2-s2.0-85210890818
dc.identifier.spage75
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85210890818&doi=10.1007%2f978-3-031-70684-4_6&partnerID=40&md5=3ed6769f5f151e3a6fa9232cb0371b41
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36976
dc.identifier.volume1132 LNNS
dc.pagecount8
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceScopus
dc.sourcetitleLecture Notes in Networks and Systems
dc.subjectAir Conditioning
dc.subjectDensity
dc.subjectDistilled Water
dc.subjectStability
dc.subjectTemperature
dc.subjectThermal Conductivity
dc.subjectThermal Insulation
dc.subjectVolume
dc.subjectAir curtains
dc.subjectCell engineering
dc.subjectNanocellulose
dc.subjectNanoclay
dc.subjectNanoparticles
dc.subjectThermal conductivity of solids
dc.subjectCellulose nanocrystal
dc.subjectDensity
dc.subjectDistilled water
dc.subjectHeat transfer performance
dc.subjectHeat transmission
dc.subjectNano-cellulose
dc.subjectNanofluids
dc.subjectProperty
dc.subjectThermal
dc.subjectVolume concentration
dc.subjectCellulose nanocrystals
dc.titleEnhancing Thermal Conductivity and Heat Transfer Performance with Nanocellulose-Based Nanofluids: A Comprehensive Studyen_US
dc.typeConference paperen_US
dspace.entity.typePublication
Files
Collections