Publication:
Highly efficient processable molybdenum trioxide as a hole blocking interlayer for super-yellow organic light emitting diode

dc.citedby4
dc.contributor.authorTalik N.A.en_US
dc.contributor.authorWoon K.L.en_US
dc.contributor.authorYap B.K.en_US
dc.contributor.authorWong W.S.en_US
dc.contributor.authorWhitcher T.J.en_US
dc.contributor.authorChanlek N.en_US
dc.contributor.authorNakajima H.en_US
dc.contributor.authorSaisopa T.en_US
dc.contributor.authorSongsiriritthigul P.en_US
dc.contributor.authorid55576358000en_US
dc.contributor.authorid12041961200en_US
dc.contributor.authorid26649255900en_US
dc.contributor.authorid57102399300en_US
dc.contributor.authorid26641611700en_US
dc.contributor.authorid24775167600en_US
dc.contributor.authorid36562269300en_US
dc.contributor.authorid55931748600en_US
dc.contributor.authorid6603434551en_US
dc.date.accessioned2023-05-29T06:11:31Z
dc.date.available2023-05-29T06:11:31Z
dc.date.issued2016
dc.descriptionAluminum compounds; Electron affinity; Fluorine compounds; Lithium Fluoride; Luminance; Nanobelts; Organic light emitting diodes (OLED); Sodium hydroxide; Transition metal oxides; Transition metals; Ultraviolet photoelectron spectroscopy; Efficiency enhancement; Energetic barriers; Hole blocking layers; Luminance efficiency; Molybdenum trioxide; Optimal thickness; Poly(p-phenylenevinylene); Solution-processed; Molybdenum oxideen_US
dc.description.abstractBy inserting lithium fluoride (LiF) between solution-processed MoO3 with optimal thickness on top of super yellow poly-(p-phenylenevinylene) (SY-PPV), the efficiency of the SY-PPV fluorescent-based devices can be significantly improved by more than two-fold. Despite the increased driving voltage, the device showed a current and a luminance efficiency up to 22.8 cd A-1 and 14.3 lm W-1 respectively, which is a more than a two-fold increase in efficiency compared to the control device using LiF/Al at a brightness of 1000 cdm-2. Ultraviolet photoelectron spectroscopy (UPS) is used to analyze the energy alignment between SY-PPV and the solution processed MoO3 and MoO3/LiF/Al interfaces. We found that the solution processed MoO3 using diluted sodium hydroxide has relatively low ionization energy (IA), electron affinity (EA) and work function decreasing with increasing thickness of MoO3. However, the optical bandgap increases with increasing spin-speed. A large energetic barrier is always present between the SY-PPY and deep lying valence band of MoO3. This is supported by suppression of hole current in hole dominating devices. The ability of thin MoO3 (?2 nm) acting as a hole blocking layer while allowing electrons to be transported across the layer and a large upward vacuum shift appeared to be the origin of efficiency enhancement of SY-PPV light-emitting diode when MoO3/LiF/Al is used. � 2016 IOP Publishing Ltd.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo395105
dc.identifier.doi10.1088/0022-3727/49/39/395105
dc.identifier.issue39
dc.identifier.scopus2-s2.0-84988916227
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84988916227&doi=10.1088%2f0022-3727%2f49%2f39%2f395105&partnerID=40&md5=377c9a9f6a8e51e9f5932dc9ce0ca5ed
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/22662
dc.identifier.volume49
dc.publisherInstitute of Physics Publishingen_US
dc.sourceScopus
dc.sourcetitleJournal of Physics D: Applied Physics
dc.titleHighly efficient processable molybdenum trioxide as a hole blocking interlayer for super-yellow organic light emitting diodeen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections