Publication:
Prediction modeling of coastal sediment transport using accelerated smooth particle hydrodynamics approach

dc.citedby1
dc.contributor.authorApalowo R.K.en_US
dc.contributor.authorAbas A.en_US
dc.contributor.authorZawawi M.H.en_US
dc.contributor.authorZahari N.M.en_US
dc.contributor.authorItam Z.en_US
dc.contributor.authorid57195377883en_US
dc.contributor.authorid56893346700en_US
dc.contributor.authorid39162217600en_US
dc.contributor.authorid54891672300en_US
dc.contributor.authorid55102723400en_US
dc.date.accessioned2024-10-14T03:17:21Z
dc.date.available2024-10-14T03:17:21Z
dc.date.issued2023
dc.description.abstractA GPU-accelerated 3D smooth particle hydrodynamics (SPH) scheme is developed and applied to a coastal multi-phase liquid-sediment interaction and sediment transport. The SPH scheme's meshless design and the sediment's particle structure enable the modeling of the waves' interactions with the sediment particles beyond the limitation of the mesh-based methods. A Newtonian constitutive model is used to model the liquid phase, and the sediment transport is formulated based on the Herschel-Bulkley-Papanastasiou (HBP) model. The yield characteristics of the sediment phase are estimated using the Drucker-Prager yield criterion. Due to the parallelization of the solution on graphics processing units, the 3D SPH scheme's performance, which uses millions of particles, is improved. Good correlations were observed in the SPH predictions and experimental measurements, with a maximum difference of 4.85 %. The validated scheme is applied to formulate forecasting models for the coastline sediment transport. It is found that erosion and scouring are expected at the coastline region inclined to the direction of the sea waves, with a predicted mass erosion of about 60e3 kg in four years. The wave's velocity is also established to be directly proportional to the sediment transport. The proposed multi-phase SPH methodology is proven effective for sediment transport prediction. � 2023 Elsevier B.V.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo101406
dc.identifier.doi10.1016/j.dynatmoce.2023.101406
dc.identifier.scopus2-s2.0-85176497912
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85176497912&doi=10.1016%2fj.dynatmoce.2023.101406&partnerID=40&md5=04832927438b2a0c3fbae4f8cb622aeb
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33860
dc.identifier.volume104
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleDynamics of Atmospheres and Oceans
dc.subjectErosion
dc.subjectLiquid-sediment interaction
dc.subjectOcean dynamics
dc.subjectParticle image velocimetry
dc.subjectSediment transport
dc.subjectSmooth particle hydrodynamics
dc.subjectComputer graphics
dc.subjectComputer graphics equipment
dc.subjectForecasting
dc.subjectGraphics processing unit
dc.subjectProgram processors
dc.subjectSediment transport
dc.subjectSedimentation
dc.subjectVelocity measurement
dc.subjectCoastal sediment transport
dc.subjectGPU-accelerated
dc.subjectImage velocimetry
dc.subjectLiquid-sediment interaction
dc.subjectOcean dynamics
dc.subjectParticle image velocimetry
dc.subjectParticle images
dc.subjectPrediction modelling
dc.subjectSediment particles
dc.subjectSmooth particle hydrodynamics
dc.subjectcoastal sediment
dc.subjecterosion
dc.subjecthydrodynamics
dc.subjectnumerical model
dc.subjectparticle image velocimetry
dc.subjectprediction
dc.subjectscour
dc.subjectsediment transport
dc.subjectErosion
dc.titlePrediction modeling of coastal sediment transport using accelerated smooth particle hydrodynamics approachen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections