Publication:
A hybrid novel SVM model for predicting CO2 emissions using Multiobjective Seagull Optimization

Date
2021
Authors
Ehteram M.
Sammen S.S.
Panahi F.
Sidek L.M.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science and Business Media Deutschland GmbH
Research Projects
Organizational Units
Journal Issue
Abstract
The agricultural sector is one of the most important sources of CO2 emissions. Thus, the current study predicted CO2 emissions based on data from the agricultural sectors of 25 provinces in Iran. The gross domestic product (GDP), the square of the GDP (GDP2), energy use, and income inequality (Gini index) were used as the inputs. The study used support vector machine (SVM) models to predict CO2 emissions. Multiobjective algorithms (MOAs), such as the seagull optimization algorithm (MOSOA), salp swarm algorithm (MOSSA), bat algorithm (MOBA), and particle swarm optimization (MOPSO) algorithm, were used to perform three important tasks for improving the SVM models. Additionally, an inclusive multiple model (IMM) used the outputs of the MOSOA, MOSSA, MOBA, and MOPSO algorithms as the inputs for predicting CO2 emissions. It was observed that the best kernel function based on the SVM-MOSOA was the radial function. Additionally, the best input combination used all the gross domestic product (GDP), squared GDP (GDP2), energy use, and income inequality (Gini index) inputs. The results indicated that the quality of the obtained Pareto front based on the MOSOA was better than those of the other algorithms. Regarding the obtained results, the IMM model decreased the mean absolute errors of the SVM-MOSOA, SVM-MOSSA, SVM-MOBA, and SVM-PSO models by 24, 31, 69, and 76%, respectively, during the training stage. The current study showed that the IMM model was the best model for predicting CO2 emissions. � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Description
agricultural market; carbon dioxide; carbon emission; Gross Domestic Product; optimization; support vector machine; Iran; carbon dioxide; algorithm; gross national product; Iran; support vector machine; Algorithms; Carbon Dioxide; Gross Domestic Product; Iran; Support Vector Machine
Keywords
Citation
Collections