Publication:
Theoretical verification of using the Ga-doped ZnO as a charge transport layer in an inorganic perovskite solar cell

dc.citedby6
dc.contributor.authorAhmed S.en_US
dc.contributor.authorAkhtaruzzaman M.en_US
dc.contributor.authorZulhafizhazuan W.en_US
dc.contributor.authorYusoff Y.en_US
dc.contributor.authorAlnaser I.A.en_US
dc.contributor.authorKarim M.R.en_US
dc.contributor.authorShahiduzzaman M.en_US
dc.contributor.authorSobayel K.en_US
dc.contributor.authorid58573844800en_US
dc.contributor.authorid57195441001en_US
dc.contributor.authorid57196150697en_US
dc.contributor.authorid57206844407en_US
dc.contributor.authorid56741226700en_US
dc.contributor.authorid56820318000en_US
dc.contributor.authorid55640096500en_US
dc.contributor.authorid57194049079en_US
dc.date.accessioned2024-10-14T03:17:51Z
dc.date.available2024-10-14T03:17:51Z
dc.date.issued2023
dc.description.abstractThe study encompasses the idea to employ a single bandgap-graded transport layer in lieu of two different (transparent conducting oxide and electron transport layer) layers in the perovskite solar cell to increase the overall device functionality. Numerical simulation has been used to investigate the cell performance parameters. The thickness of the absorber layer has been altered in relation to the defect density to identify the optimal cell parameter values. Maximum power conversion efficiency (PCE) has been recorded as 22.17% at 1E13 cm?3 defect density in the absorber. These findings demonstrate the numerical modeling limitations for the relationship between defect mechanism and performance. The activation energy and effects of series resistance (R s) on solar cells have also been assessed. The temperature degradation gradient of the proposed structure GZO/CsGeI3/NiO/Au has been found to be 3% only with a PCE of 22.17%, which validates the concept of using a bandgap-graded transport layer and paves the way for a new era for perovskite research. � 2023 The Japan Society of Applied Physics.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo92001
dc.identifier.doi10.35848/1347-4065/aced74
dc.identifier.issue9
dc.identifier.scopus2-s2.0-85170823484
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85170823484&doi=10.35848%2f1347-4065%2faced74&partnerID=40&md5=d930b8744d25fc9fd025aebd63ad1f65
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/34070
dc.identifier.volume62
dc.publisherInstitute of Physicsen_US
dc.sourceScopus
dc.sourcetitleJapanese Journal of Applied Physics
dc.subjectdefect density
dc.subjectGZO
dc.subjectinterface defect
dc.subjectperovskite
dc.subjectSCAPS-1D
dc.subjectActivation energy
dc.subjectConversion efficiency
dc.subjectDefect density
dc.subjectElectric resistance
dc.subjectElectron transport properties
dc.subjectEnergy gap
dc.subjectGallium compounds
dc.subjectII-VI semiconductors
dc.subjectNumerical models
dc.subjectPerovskite solar cells
dc.subjectTransparent conducting oxides
dc.subjectZinc oxide
dc.subjectBandgap graded
dc.subjectCharge transport layer
dc.subjectDefects density
dc.subjectGa-doped ZnO
dc.subjectGZO
dc.subjectInorganics
dc.subjectInterface defects
dc.subjectPower conversion efficiencies
dc.subjectSCAPS-1D
dc.subjectTransport layers
dc.subjectPerovskite
dc.titleTheoretical verification of using the Ga-doped ZnO as a charge transport layer in an inorganic perovskite solar cellen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections