Publication:
Effect of temperature on synthesis of cellulose nanoparticles via ionic liquid hydrolysis process

dc.citedby19
dc.contributor.authorSamsudin N.A.en_US
dc.contributor.authorLow F.W.en_US
dc.contributor.authorYusoff Y.en_US
dc.contributor.authorShakeri M.en_US
dc.contributor.authorTan X.Y.en_US
dc.contributor.authorLai C.W.en_US
dc.contributor.authorAsim N.en_US
dc.contributor.authorOon C.S.en_US
dc.contributor.authorNewaz K.S.en_US
dc.contributor.authorTiong S.K.en_US
dc.contributor.authorAmin N.en_US
dc.contributor.authorid57190525429en_US
dc.contributor.authorid56513524700en_US
dc.contributor.authorid57206844407en_US
dc.contributor.authorid55433849200en_US
dc.contributor.authorid56784907700en_US
dc.contributor.authorid54879860000en_US
dc.contributor.authorid55902096700en_US
dc.contributor.authorid55332679600en_US
dc.contributor.authorid56728684300en_US
dc.contributor.authorid15128307800en_US
dc.contributor.authorid7102424614en_US
dc.date.accessioned2023-05-29T08:09:18Z
dc.date.available2023-05-29T08:09:18Z
dc.date.issued2020
dc.descriptionCatalysts; Cellulose; Crystallinity; Field emission microscopes; Fourier transform infrared spectroscopy; Hydrolysis; Ionic liquids; Microcrystals; Nanoparticles; Scanning electron microscopy; Synthesis (chemical); X ray diffraction; Cellulose nanoparticles; Effect of temperature; Field emission scanning electron microscopy; Green chemistry approaches; Hazardous waste products; Micro-crystalline cellulose; Preferential orientation; Structural transformation; Thermogravimetric analysis; Catalysts; Cellulose; Crystallinity; Gravimetry; Hydrolysis; Scanning Electron Microscopy; Thermal Analysis; X Ray Diffractionen_US
dc.description.abstractThis paper elucidated the properties of cellulose nanoparticles (CNPs) extracted from microcrystalline cellulose by hydrolysis reaction by using 1-butyl-3-methylimidazolium acetate (BmimOAc) as a catalyst and solvent at various temperatures (i.e. 70, 80, 90, 100 and 110 �C). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA) were used to characterise the samples and the relevant analysis was presented in detail. It was found that the initial peak from microcrystalline cellulose at the preferential orientation of (200) split into two broad peaks, with the preferential orientations found to be (110) and (020) as per XRD analysis. This showed that native cellulose experienced a structural transformation from its initial cellulose type I to the terminated phase of cellulose type II in CNPs, with a remarkable reduction in crystallinity after the hydrolysis reaction in BmimOAc. The reaction temperature was found to refine the individual cellulosic fibres with a smooth, homogenous, and defined width, which was obtained at an optimum temperature of 80 �C. The application of BmimOAc as both catalyst and solvent thus introduces a green chemistry approach as it does not produce any hazardous waste products. Additionally, it is an economical process as the recovery of the ionic liquid is high, reaching up to 86%. � 2020 Elsevier B.V.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo113030
dc.identifier.doi10.1016/j.molliq.2020.113030
dc.identifier.scopus2-s2.0-85083288043
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85083288043&doi=10.1016%2fj.molliq.2020.113030&partnerID=40&md5=b68f6e4369d123616360f23cf06924cc
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/25428
dc.identifier.volume308
dc.publisherElsevier B.V.en_US
dc.sourceScopus
dc.sourcetitleJournal of Molecular Liquids
dc.titleEffect of temperature on synthesis of cellulose nanoparticles via ionic liquid hydrolysis processen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections