Publication:
Thermal and hydrodynamic performance analysis of circular microchannel heat exchanger utilizing nanofluids

dc.citedby11
dc.contributor.authorMohammed H.A.en_US
dc.contributor.authorBhaskaran G.en_US
dc.contributor.authorShuaib N.H.en_US
dc.contributor.authorAbu-Mulaweh H.I.en_US
dc.contributor.authorSaidur R.en_US
dc.contributor.authorid15837504600en_US
dc.contributor.authorid36717364100en_US
dc.contributor.authorid13907934500en_US
dc.contributor.authorid7003564408en_US
dc.contributor.authorid6602374364en_US
dc.date.accessioned2023-12-29T07:46:15Z
dc.date.available2023-12-29T07:46:15Z
dc.date.issued2012
dc.description.abstractPurpose - The purpose of this paper is to investigate numerically the thermal and hydrodynamics performance of circular microchannel heat exchanger (CMCHE) using various nanofluids. Design/methodology/approach - The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a balanced MCHE are solved using finite volume method. Findings - The results are shown in terms of temperature profile, heat transfer coefficient, pressure drop, wall shear stress, pumping power, effectiveness and performance index. The addition of nanoparticles increased the heat transfer rate of the base fluids. The temperature profiles of the fluids have revealed that higher average bulk temperatures were obtained by the nanofluids compared to water. The addition of nanoparticles also increased the pressure drop along the channels slightly. The increase in nanoparticle concentrations yielded better heat transfer rate while the increase in Reynolds number decreased the heat transfer rate. Research limitations/implications - The tested nanofluids are Ag, Al 2O 3, CuO, SiO 2, and TiO 2. Reynolds number range varied from 100 to 800 and the nanoparticle concentration varied from 2 per cent to 10 per cent. Practical implications - Parallel flow in CMCHEs is used in thermal engineering applications and the design and performance analysis of these CMCHE are of practical importance. Originality/value - This paper provides the details of the thermal and hydrodynamics performance analysis of flow heat exchangers using nanofluids, which can be used for heat transfer augmentation in thermal design. � Emerald Group Publishing Limited.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1108/09615531211255789
dc.identifier.epage927
dc.identifier.issue7
dc.identifier.scopus2-s2.0-84867012403
dc.identifier.spage907
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84867012403&doi=10.1108%2f09615531211255789&partnerID=40&md5=bb9854b7c7e066ab2c00fd64f18d9026
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30282
dc.identifier.volume22
dc.pagecount20
dc.sourceScopus
dc.sourcetitleInternational Journal of Numerical Methods for Heat and Fluid Flow
dc.subjectCircular microchannels
dc.subjectFinite volume method
dc.subjectFlow
dc.subjectHeat exchangers
dc.subjectHeat transfer
dc.subjectHeat transfer enhancement
dc.subjectMicrochannel heat exchanger
dc.subjectNanofluids
dc.subjectCooling systems
dc.subjectFinite volume method
dc.subjectHeat exchangers
dc.subjectHeat transfer
dc.subjectHeat transfer coefficients
dc.subjectHydrodynamics
dc.subjectMicrochannels
dc.subjectNanoparticles
dc.subjectPressure drop
dc.subjectReynolds number
dc.subjectSpecific heat
dc.subjectTemperature control
dc.subjectTitanium dioxide
dc.subjectCircular microchannel
dc.subjectFlow
dc.subjectHeat Transfer enhancement
dc.subjectMicrochannel heat exchanger
dc.subjectNanofluids
dc.subjectNanofluidics
dc.titleThermal and hydrodynamic performance analysis of circular microchannel heat exchanger utilizing nanofluidsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections