Publication:
MXene-based novel nanocomposites doped SnO2 for boosting the performance of perovskite solar cells

dc.citedby3
dc.contributor.authorAlhamada T.F.en_US
dc.contributor.authorHanim M.A.A.en_US
dc.contributor.authorJung D.W.en_US
dc.contributor.authorSaidur R.en_US
dc.contributor.authorNuraini A.A.en_US
dc.contributor.authorHasan W.Z.W.en_US
dc.contributor.authorTan K.H.en_US
dc.contributor.authorNoh M.M.en_US
dc.contributor.authorTeridi M.A.M.en_US
dc.contributor.authorid57202900837en_US
dc.contributor.authorid24723635600en_US
dc.contributor.authorid56223110700en_US
dc.contributor.authorid6602374364en_US
dc.contributor.authorid36629113400en_US
dc.contributor.authorid57219410727en_US
dc.contributor.authorid37020505900en_US
dc.contributor.authorid57200419635en_US
dc.contributor.authorid12801271200en_US
dc.date.accessioned2025-03-03T07:41:43Z
dc.date.available2025-03-03T07:41:43Z
dc.date.issued2024
dc.description.abstractSince being first published in 2018, the use of two-dimensional MXene in solar cells has attracted significant interest. This study presents, for the first time, the synthesis of an efficient hybrid electrocatalyst in the form of a nanocomposite (MXene/CoS)-SnO2 designed to function as a high-performance electron transfer layer (ETL). The study can be divided into three distinct parts. The first part involves the synthesis of single-layer Ti3C2Tx MXene nanosheets, followed by the preparation of a CoS solution. Subsequently, in the second part, the fabrication of MXene/CoS heterostructure nanocomposites is carried out, and a comprehensive characterization is conducted to evaluate the physical, structural, and optical properties. In the third part, the attention is on the crucial characterizations of the novel nanocomposite-electron transport layer (ETL) solution, significantly contributing to the evolution of perovskite solar cells. Upon optimising the composition, an exceptional power conversion efficiency of more than 17.69% is attained from 13.81% of the control devices with fill factor (FF), short-circuit current density (Jsc), and open-circuit voltage (Voc) were 66.51%, 20.74�mA/cm2, and 1.282�V. Therefore, this PCE is 21.93% higher than the control device. The groundbreaking MXene/CoS (2�mg�mL?1) strategy reported in this research represents a promising and innovative avenue for the realization of highly efficient perovskite solar cells. ? The Author(s) 2024.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo14638
dc.identifier.doi10.1038/s41598-024-64632-1
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85196825324
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85196825324&doi=10.1038%2fs41598-024-64632-1&partnerID=40&md5=0ad3a17a8d061c5b09763dcf532daad1
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36261
dc.identifier.volume14
dc.publisherNature Researchen_US
dc.relation.ispartofAll Open Access; Gold Open Access; Green Open Access
dc.sourceScopus
dc.sourcetitleScientific Reports
dc.titleMXene-based novel nanocomposites doped SnO2 for boosting the performance of perovskite solar cellsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections