Publication:
Chemical and thermal performance analysis of a solar thermochemical reactor for hydrogen production via two-step WS cycle

dc.citedby6
dc.contributor.authorSharma J.P.en_US
dc.contributor.authorKumar R.en_US
dc.contributor.authorAhmadi M.H.en_US
dc.contributor.authorMukhtar A.en_US
dc.contributor.authorYasir A.S.H.M.en_US
dc.contributor.authorSharifpur M.en_US
dc.contributor.authorOngar B.en_US
dc.contributor.authorYegzekova A.en_US
dc.contributor.authorid57197711668en_US
dc.contributor.authorid55776822500en_US
dc.contributor.authorid55016898100en_US
dc.contributor.authorid57195426549en_US
dc.contributor.authorid58518504200en_US
dc.contributor.authorid23092177300en_US
dc.contributor.authorid57200992503en_US
dc.contributor.authorid57422122400en_US
dc.date.accessioned2024-10-14T03:17:32Z
dc.date.available2024-10-14T03:17:32Z
dc.date.issued2023
dc.description.abstractCeria-based H2O/CO2-splitting solar-driven thermochemical cycle produces hydrogen or syngas. Thermal optimization of solar thermochemical reactor (STCR) improves the solar-to-fuel conversion efficiency. This research presents two conceptual designs and thermal modelling of RPC-ceria-based STCR cavities to attain the optimal operating conditions for CeO2 reduction step. Presented hybrid geometries consisting of cylindrical�hemispherical and conical frustum�hemispherical structures. The focal point was positioned at x = 0, -10 mm, and -20 mm from the aperture to examine the flux distribution in both solar reactor configurations. Case-1 with 2 milliradian S.E (slope error) yields a 27% greater solar flux than case-1 with 4 milliradians S.E, despite the 4 milliradian S.E produces an elevated temperature in the reactor cavity. The mean temperature in the reactive porous region was most significant for case-2 (x = -10 mm) with 4 mrad S.E for model-2, reaching 1966 K and 2008 K radially and axially, respectively. In case-2 (x = -10 mm) for 4 mrad S.E, model-1 attained 1720 K. The efficiency analysis shows that the highest conversion efficiency value was obtained to be 7.95% for case-1 with 4 milliradian S.E. � 2023 The Author(s)en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1016/j.egyr.2023.06.012
dc.identifier.epage113
dc.identifier.scopus2-s2.0-85162771405
dc.identifier.spage99
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85162771405&doi=10.1016%2fj.egyr.2023.06.012&partnerID=40&md5=1022b617c6042e30a6597d907ed7ad9e
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33964
dc.identifier.volume10
dc.pagecount14
dc.publisherElsevier Ltden_US
dc.relation.ispartofAll Open Access
dc.relation.ispartofGold Open Access
dc.sourceScopus
dc.sourcetitleEnergy Reports
dc.subjectPorous media
dc.subjectSolar fuels
dc.subjectSolTrace
dc.subjectSTCR modelling
dc.subjectThermal analysis
dc.subjectWS process
dc.subjectConversion efficiency
dc.subjectHydrogen production
dc.subjectPorous materials
dc.subjectSolar fuels
dc.subjectSolar power generation
dc.subjectThermoanalysis
dc.subjectMilliradians
dc.subjectPorous medium
dc.subjectReactor cavity
dc.subjectReactor modelling
dc.subjectSlope errors
dc.subjectSolar fuels
dc.subjectSolar thermochemical reactor modeling
dc.subjectSoltrace
dc.subjectThermo-chemical reactor
dc.subjectWS process
dc.subjectCerium oxide
dc.titleChemical and thermal performance analysis of a solar thermochemical reactor for hydrogen production via two-step WS cycleen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections