Publication: Chemical and thermal performance analysis of a solar thermochemical reactor for hydrogen production via two-step WS cycle
dc.citedby | 6 | |
dc.contributor.author | Sharma J.P. | en_US |
dc.contributor.author | Kumar R. | en_US |
dc.contributor.author | Ahmadi M.H. | en_US |
dc.contributor.author | Mukhtar A. | en_US |
dc.contributor.author | Yasir A.S.H.M. | en_US |
dc.contributor.author | Sharifpur M. | en_US |
dc.contributor.author | Ongar B. | en_US |
dc.contributor.author | Yegzekova A. | en_US |
dc.contributor.authorid | 57197711668 | en_US |
dc.contributor.authorid | 55776822500 | en_US |
dc.contributor.authorid | 55016898100 | en_US |
dc.contributor.authorid | 57195426549 | en_US |
dc.contributor.authorid | 58518504200 | en_US |
dc.contributor.authorid | 23092177300 | en_US |
dc.contributor.authorid | 57200992503 | en_US |
dc.contributor.authorid | 57422122400 | en_US |
dc.date.accessioned | 2024-10-14T03:17:32Z | |
dc.date.available | 2024-10-14T03:17:32Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Ceria-based H2O/CO2-splitting solar-driven thermochemical cycle produces hydrogen or syngas. Thermal optimization of solar thermochemical reactor (STCR) improves the solar-to-fuel conversion efficiency. This research presents two conceptual designs and thermal modelling of RPC-ceria-based STCR cavities to attain the optimal operating conditions for CeO2 reduction step. Presented hybrid geometries consisting of cylindrical�hemispherical and conical frustum�hemispherical structures. The focal point was positioned at x = 0, -10 mm, and -20 mm from the aperture to examine the flux distribution in both solar reactor configurations. Case-1 with 2 milliradian S.E (slope error) yields a 27% greater solar flux than case-1 with 4 milliradians S.E, despite the 4 milliradian S.E produces an elevated temperature in the reactor cavity. The mean temperature in the reactive porous region was most significant for case-2 (x = -10 mm) with 4 mrad S.E for model-2, reaching 1966 K and 2008 K radially and axially, respectively. In case-2 (x = -10 mm) for 4 mrad S.E, model-1 attained 1720 K. The efficiency analysis shows that the highest conversion efficiency value was obtained to be 7.95% for case-1 with 4 milliradian S.E. � 2023 The Author(s) | en_US |
dc.description.nature | Final | en_US |
dc.identifier.doi | 10.1016/j.egyr.2023.06.012 | |
dc.identifier.epage | 113 | |
dc.identifier.scopus | 2-s2.0-85162771405 | |
dc.identifier.spage | 99 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162771405&doi=10.1016%2fj.egyr.2023.06.012&partnerID=40&md5=1022b617c6042e30a6597d907ed7ad9e | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/33964 | |
dc.identifier.volume | 10 | |
dc.pagecount | 14 | |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | All Open Access | |
dc.relation.ispartof | Gold Open Access | |
dc.source | Scopus | |
dc.sourcetitle | Energy Reports | |
dc.subject | Porous media | |
dc.subject | Solar fuels | |
dc.subject | SolTrace | |
dc.subject | STCR modelling | |
dc.subject | Thermal analysis | |
dc.subject | WS process | |
dc.subject | Conversion efficiency | |
dc.subject | Hydrogen production | |
dc.subject | Porous materials | |
dc.subject | Solar fuels | |
dc.subject | Solar power generation | |
dc.subject | Thermoanalysis | |
dc.subject | Milliradians | |
dc.subject | Porous medium | |
dc.subject | Reactor cavity | |
dc.subject | Reactor modelling | |
dc.subject | Slope errors | |
dc.subject | Solar fuels | |
dc.subject | Solar thermochemical reactor modeling | |
dc.subject | Soltrace | |
dc.subject | Thermo-chemical reactor | |
dc.subject | WS process | |
dc.subject | Cerium oxide | |
dc.title | Chemical and thermal performance analysis of a solar thermochemical reactor for hydrogen production via two-step WS cycle | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |